New yellow serradella varieties for low rainfall pastures

Clinton Revell

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Plant Biology Commons, Plant Breeding and Genetics Commons, and the Soil Science Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol33/iss3/9

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
New yellow serradella varieties for low rainfall pastures

By Clinton Revell, Pasture Research Officer, Dryland Research Institute, Merredin

Large areas of acidic, sandy soils in Western Australia's low and medium rainfall, wheat-sheep areas are suited to the pasture legume, yellow serradella.

In the past, a lack of varieties with suitable maturity has limited the use of this species.

New varieties developed in Western Australia and significantly earlier in maturity than traditional types can now extend the use of yellow serradella into these regions.

About serradella

Yellow serradella *Ornithopus compressus* is an annual pasture legume that is well-adapted to acidic, infertile soils. Its deep root system allows it to persist on deep, sandy soils where subterranean clover frequently fails because it cannot exploit subsoil water and nutrient reserves.
The agronomic characteristics of these new varieties differ considerably and highlight the variation that exists within the species. Important differences are: time to flowering, degree of pod segmentation and tolerance to aluminium toxicity, a key element of acidity stress (see Table 1).

Time to Flowering

Early flowering is desirable for varieties targeted to environments with a short growing season. It confers more reliable seed production, which is essential for persistence.

Early maturing varieties are also needed in the high rainfall areas, since they are often grown on deep, sandy soils that dry out in spring much earlier than other soils with higher clay contents. Paros is the earliest flowering variety available commercially, flowering three to seven days earlier than Madeira. It also has a faster rate of pod maturation. However, compared to other pasture legume species used in low rainfall areas, its maturity is still relatively late — for example, it is two to three weeks later than Santiago burr medic. Selection of a variety earlier in maturity than Paros is still a high priority.

Characteristics of new varieties

The agronomic characteristics of these new varieties differ considerably and highlight the variation that exists within the species. Important differences are: time to flowering, degree of pod segmentation and tolerance to aluminium toxicity, a key element of acidity stress (see Table 1).

Pod type

Pods of yellow serradella are similar in form to those of wild radish, although much flatter. Varieties differ in the extent to which individual segments break up when mature.
Pods, pod segments and seeds of yellow serradella varieties and accessions.
Recent research in the eastern wheatbelt

Serradella research in the low rainfall wheatbelt (less than 350 mm) has concentrated on the highly acidic, yellow sandplain soils, which occupy about 25 per cent of farm land. Some of these soils can sustain a wheat:lupin rotation. However, many are too acidic for wheat and are managed as continuous unimproved pasture.

Much of the research was conducted at the light land annexe of the Merredin Research Station, located at South Carrabin, 60 km east of Merredin (see Table 3). Most of the early agronomic work was carried out with the variety Madeira, for which large quantities of seed were readily available. However, the new variety Paros has been shown to be more productive and is likely to be a better alternative in most situations (see Figure 1).

Table 1. Important characteristics of yellow serradella varieties recommended in Western Australia

<table>
<thead>
<tr>
<th>Variety</th>
<th>Days to flower (Perth)</th>
<th>Pod type</th>
<th>Aluminium tolerance</th>
<th>Hardseed level</th>
<th>Seed size (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paros</td>
<td>92</td>
<td>non-segmented</td>
<td>high</td>
<td>high</td>
<td>2.8</td>
</tr>
<tr>
<td>Madeira</td>
<td>95</td>
<td>mod. segmented</td>
<td>low</td>
<td>medium-high</td>
<td>1.8</td>
</tr>
<tr>
<td>Tauro</td>
<td>115</td>
<td>mod. segmented</td>
<td>medium</td>
<td>medium</td>
<td>2.2</td>
</tr>
<tr>
<td>Pitman</td>
<td>130</td>
<td>segmented</td>
<td>medium</td>
<td>low</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Highly segmented pods that readily break on contact have an advantage in the field. They are less liable to be eaten by grazing animals and the pods contact the soil better when seeds are beginning to germinate.

The segmented pod type, however, poses a problem for harvesting because seed cannot be threshed out of the small, individual segments with conventional machinery. Varieties with non-segmented pods thresh better, but the process is still not entirely satisfactory.

Tolerance of aluminium

Tolerance to high levels of aluminium in the subsoil is particularly important for growth and persistence on very acidic soils such as the wodgil soils in the eastern wheatbelt. In these situations, the level of exchangeable aluminium can rise dramatically and retard root growth.

Studies in New South Wales have ranked varieties for tolerance to high aluminium levels (Scott, Drew and Michalk, 1991). The order of ranking is Paros (best), Tauro, and Madeira (poorest). Paros was up to four times more tolerant than Madeira.

Hard seeds

In the pod form, all the new varieties are considerably more hardseeded than Pitman. Softening the seed by exposing the pods to the sun over summer in a thin layer, as sometimes practised with Pitman, is of doubtful value. The best way to obtain germinable seed for new sowings is to mechanically dehull the pods.

Despite the high levels of hard seed, regeneration in the field has generally been adequate, probably because of high and reliable seed production. Paros is the most hardseeded variety and second-year stands are sometimes sparse. Densities are much higher in the third and fourth years (see Table 1).

Growth habit

Varieties also differ in vegetative growth habit, varying from the erect forms of Madeira and Tauro to the relatively prostrate form of Paros. Paros is likely to be more tolerant of hard grazing than the other varieties, although it tends to produce less leaf material.

Recent research in the eastern wheatbelt

Serradella research in the low rainfall wheatbelt (less than 350 mm) has concentrated on the highly acidic, yellow sandplain soils, which occupy about 25 per cent of farm land. Some of these soils can sustain a wheat:lupin rotation.

Despite the high levels of hard seed, regeneration in the field has generally been adequate, probably because of high and reliable seed production. Paros is the most hardseeded variety and second-year stands are sometimes sparse. Densities are much higher in the third and fourth years (see Table 1).

Growth habit

Varieties also differ in vegetative growth habit, varying from the erect forms of Madeira and Tauro to the relatively prostrate form of Paros. Paros is likely to be more tolerant of hard grazing than the other varieties, although it tends to produce less leaf material.

Recent research in the eastern wheatbelt

Serradella research in the low rainfall wheatbelt (less than 350 mm) has concentrated on the highly acidic, yellow sandplain soils, which occupy about 25 per cent of farm land. Some of these soils can sustain a wheat:lupin rotation. However, many are too acidic for wheat and are managed as continuous unimproved pasture.

Much of the research was conducted at the light land annexe of the Merredin Research Station, located at South Carrabin, 60 km east of Merredin (see Table 3). Most of the early agronomic work was carried out with the variety Madeira, for which large quantities of seed were readily available. However, the new variety Paros has been shown to be more productive and is likely to be a better alternative in most situations (see Figure 1).
Unersowing pods in a cereal crop is an alternative, especially if a paddock has been cropped with lupins, since serradella has the same rhizobial requirements. Inoculation is therefore not necessary. Few serradella plants emerge under the crop, but some seed softens over the following summer, which provides the basis for the pasture.

Results have shown that undersowing is not the best establishment technique. Low regenerating densities and strong competition from broad-leaved weeds frequently result in low serradella seed reserves.

The use of dehulled seed is the preferred approach for establishment. However, research into the use of whole pods was needed because dehulled seed was expensive and scarce.

Paros has larger seeds than Madeira; this should allow slightly deeper seeding depths to be used.

The target density for serradella established on its own with dehulled seed is about 150 plants/sq. m for Madeira and about 100 plants/sq. m for Paros. This should be achieved with seeding rates between 3 and 4 kg/ha. However, final seed production depends heavily on seasonal conditions during spring (see Figure 2). With the varieties available now, early seeding is essential provided there is good weed control.

Lower seeding rates can be used to reduce costs if the serradella is sown as a mixture with subterranean clover or rose clover. The clover should provide short term feed value until such time as the serradella content builds up.

Establishment

Sandy surfaced soils in low rainfall environments are difficult soils in which to establish small-seeded pasture species. Soil water relations of the topsoil are not always conducive to seed germination at the break of the season. The small seeds need to be sown shallow (one to two centimetres). However, topsoils can dry quickly following cultivation which can result in low plant establishment. Once germinated, serradella seedlings have good drought tolerance.

Paros has larger seeds than Madeira; this should allow slightly deeper seeding depths to be used.

The target density for serradella established on its own with dehulled seed is about 150 plants/sq. m for Madeira and about 100 plants/sq. m for Paros. This should be achieved with seeding rates between 3 and 4 kg/ha. However, final seed production depends heavily on seasonal conditions during spring (see Figure 2). With the varieties available now, early seeding is essential provided there is good weed control.

Lower seeding rates can be used to reduce costs if the serradella is sown as a mixture with subterranean clover or rose clover. The clover should provide short term feed value until such time as the serradella content builds up.
The two major insect problems of serradella in the eastern wheatbelt are red-legged earth mite at the seedling stage and budworm when pods are developing. Budworm can be a serious threat, because serradella often remains green for longer periods than other, more shallow rooted, pasture components. The early maturing variety Paros suffers less damage than Madeira and it is likely that an even earlier maturing variety will be less susceptible than Paros.

Weed control

Preliminary research has been conducted on the tolerance of yellow serradella to a range of herbicides for broad-leaved weeds. Problem weeds include wild radish, wild turnip and capeweed.

A safe option for weed control with chemicals will be particularly useful in the establishment year, when grazing management is not always feasible as a control measure.

Results from 1990 and 1991 show that the safest option is the unregistered product Pursuit® (AC 263.499) and this product requires further work (see Table 4). The phenoxy chemicals (2,4-D Amine, 2,4-DB) tended to delay maturity and so reduce seed production. The safest of this group was 2,4-DB; low rates could be useful for wild turnip control. Reglone® and Brodal® caused substantial losses in early production but plants eventually recovered. Weed control with low rates of Reglone® was poor.

The best compromise appears to be bromoxynil at 1.0 L/ha sprayed at the three to four leaf stage. This product will reduce early production, delay flowering and reduce seed production. However, it provides the best overall result as far as weed control and crop safety are concerned. Further work with the commercial mix of bromoxynil and Brodal® (Jaguar®) is also warranted, since this mix may give better results than bromoxynil alone.

Insect control

The two major insect problems of serradella in the eastern wheatbelt are red-legged earth mite at the seedling stage and budworm when pods are developing.

Budworm can be a serious threat, because serradella often remains green for longer periods than other, more shallow rooted, pasture components. The early maturing variety Paros suffers less damage than Madeira and it is likely that an even earlier maturing variety will be less susceptible than Paros.
Pink cutworm has also caused occasional damage in spring. Bluegreen aphid is often found on serradella in spring, but does not appear to cause significant damage.

Grazing

Moderate grazing is needed over summer to remove some of the dry residue. This ensures good regeneration after the opening rains by exposing the pods fully to the sun, causing a rapid softening of hard seeds. Pods do not have to be buried by cultivation if serradella pastures are grazed over summer (see Figure 5). Care must be taken not to overgraze pastures, since these light textured soils are liable to be eroded by wind.

Pastures grown for seed production need to be harvested with a suction harvester, because plants rarely grow tall enough to be harvested by conventional headers. This may also leave the soil liable to erosion.

Future research

New accessions

Further collections of serradella were made in the Mediterranean region in 1987 and 1988. These have added more than 250 new accessions to the serradella collection maintained at the Genetic Resource Centre in Western Australia. Documentation and preliminary evaluation of the accessions is being carried out by Mr R. Snowball at the Centre.

The most promising collections are those made by Dr M. Ewing and Mr J. Howieson. This material was collected from the Cyclades Islands, in the south of Greece, in regions ranging from 350 to 600 mm rainfall and often from infertile and acidic sites.

Early testing of the yellow serradella accessions has revealed some of the earliest maturing varieties ever evaluated in serradella research programs. A selection of these varieties was tested in the low rainfall wheatbelt for the first time in 1991 (see Table 5). The development of a variety that is earlier in maturity than Paros appears a strong possibility. This will provide added impetus for the use of yellow serradella in the low rainfall wheatbelt.

Harvesting and seed processing

The future of the serradella seed industry in Western Australia depends on the development of a commercial dehulling system. A prototype machine has been constructed by an engineering team at the Trangie Agricultural Research Centre, NSW, as part of a research project funded by the Wool Research and Development Corporation. This machine awaits commercial field testing.

Success is also likely to come from innovations by farmers at the harvesting stage of the seed production system. The future for serradella in the traditional wheat growing areas looks bright if commercially acceptable seed production systems can be developed.

Acknowledgements

This research has been supported by the Wool Research and Development Corporation and the State Wheat Industry Research Committee of Western Australia.

Table 4. Seed production of Paros yellow serradella following application of broad-leaf herbicides at Carrabin

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Seed production, as % of unsprayed treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1990 sprayed 7-9 leaf</td>
</tr>
<tr>
<td>Unsprayed</td>
<td>100*</td>
</tr>
<tr>
<td>2,4-D amine 300 mL/ha</td>
<td>49</td>
</tr>
<tr>
<td>Bromoxynil 1.0 L/ha</td>
<td>63</td>
</tr>
<tr>
<td>Reglone® 306 mL/ha + wetter</td>
<td>77</td>
</tr>
<tr>
<td>Brodal® 80 mL/ha</td>
<td>61</td>
</tr>
<tr>
<td>Pursuit® 250 mL/ha + wetter</td>
<td>106</td>
</tr>
<tr>
<td>2,4-DB 1.0 L/ha</td>
<td>64</td>
</tr>
<tr>
<td>Brodal 25 plus</td>
<td></td>
</tr>
<tr>
<td>Bromoxynil 625 mL/ha (equivalent to 500 mL/ha Jaguar®)</td>
<td>–</td>
</tr>
</tbody>
</table>

* 467 kg/ha
† 322 kg/ha

Table 5. Maturity and seed production of some recent accessions of yellow serradella grown at a site north-east of Corrigin, 1991

Accessions labelled GEH are from Greece.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Days to flower</th>
<th>Seed yield (kg/ha)</th>
<th>Pod type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paros</td>
<td>98</td>
<td>660</td>
<td>non-segmented</td>
</tr>
<tr>
<td>Madeira</td>
<td>110</td>
<td>377</td>
<td>moderately segmented</td>
</tr>
<tr>
<td>GEH 72-2A</td>
<td>90</td>
<td>636</td>
<td>non-segmented</td>
</tr>
<tr>
<td>GEH 72-1A</td>
<td>98</td>
<td>447</td>
<td>moderately segmented</td>
</tr>
<tr>
<td>GEH 72-1B</td>
<td>99</td>
<td>686</td>
<td>moderately segmented</td>
</tr>
<tr>
<td>GEH 70</td>
<td>100</td>
<td>566</td>
<td>non-segmented</td>
</tr>
<tr>
<td>GEH 74-A</td>
<td>100</td>
<td>563</td>
<td>moderately segmented</td>
</tr>
<tr>
<td>GEH 62</td>
<td>102</td>
<td>694</td>
<td>non-segmented</td>
</tr>
</tbody>
</table>

Further reading

