Native Vegetation Handbook Series

4-1997

Native Vegetation Handbook for the Shire of Augusta-Margaret River

Shaun B. Grein

Follow this and additional works at: http://researchlibrary.agric.wa.gov.au/nat_veg

Part of the Biodiversity Commons, Botany Commons, Environmental Monitoring Commons, and the Weed Science Commons

Recommended Citation

This report is brought to you for free and open access by Research Library. It has been accepted for inclusion in Native Vegetation Handbook Series by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER
This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
Native Vegetation Handbook for the Shire of Augusta - Margaret River
Acknowledgments

Amendments and proof reading undertaken by Sarah Weaving.

Digital data was provided for mapping by the Pastoral and Agricultural Geographic Information System (PAGIS) at Agriculture Western Australia. For cartographic work, special thanks go to Michael Andacich.

For Geographic Information Systems (GIS) information, thanks to Julian Coker.

Thank you to the Natural Resource Assessment Group for soils information.

Copies of the Native Vegetation Handbook for the Shire of Augusta-Margaret River are available by contacting:

The Spatial Resources Information Group
Agriculture Western Australia
Baron-Hay Court
South Perth 6151
Telephone (08) 9368 3237

ISBN: 0 7309 8756 6

Cover: The Shire of Augusta-Margaret River in relation to the Blackwood Catchment
NATIVE VEGETATION HANDBOOK
FOR THE SHIRE OF AUGUSTA-MARGARET RIVER

Shaun B. Grein
Spatial Resources Information Group
Division of Regional Operations
Agriculture Western Australia

Produced by the Western Australian Department of Agriculture and Greening Western Australia with the assistance from the Commonwealth Government through Environment Australia’s Save the Bush Program.

April, 1997
Contents

Introduction

- Purpose of the Handbook
- Shire of Augusta-Margaret River

Natural Resources of the Shire of Augusta-Margaret River-Past and Present

- Brief Description of the Vegetation Systems
- Current Extent of Native Vegetation
- Wetlands
- Fauna
- Rare and Endangered Flora

Land Resources

- Geology
- Soils
- Topography

Land Management and Land Degradation Issues

- Clearing
- Waterlogging
- Rising Water Table and Salinity
- Wind Erosion
- Water Erosion
- Managing Existing Vegetation

Bringing It All Together

- Integrated Management for Land and Nature Conservation in the Shire
- Projects in the Shire
- Reducing the Cost of Conservation

References

- Further Reading

Local Contacts

Appendix 1. Plant Species List (Chapman Vegetation System)
<table>
<thead>
<tr>
<th>Appendix 2. Plant Species List (Boranup Vegetation System)</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 3. Plant Species List (Scott River Vegetation System)</td>
<td>33</td>
</tr>
<tr>
<td>Appendix 4. Botanical Information and Species List for Stands in Remnant AUG02613</td>
<td>34</td>
</tr>
<tr>
<td>Appendix 5. Botanical Information and Species List for Stands in Remnant AUG2822</td>
<td>39</td>
</tr>
<tr>
<td>Appendix 6. Botanical Information and Species List for Stands in Remnant AUG02873</td>
<td>43</td>
</tr>
<tr>
<td>Appendix 7. Botanical Information and Species List for Stands in Remnant AUG03125</td>
<td>47</td>
</tr>
<tr>
<td>Appendix 8. Native Mammals of the Katanning CALM District</td>
<td>50</td>
</tr>
<tr>
<td>Appendix 9. Reptiles and Amphibians of the Katanning CALM District</td>
<td>51</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Cadastral Boundaries of the Shire of Augusta-Margaret River.

Figure 2. All Major, Minor and Access Roads in the Shire of Augusta-Margaret River.

Figure 3. The Shire of Augusta-Margaret River in relation to the Natural Resource Zones of the South-West Land Division of Western Australia (Allison et al., 1993).

Figure 4. Vegetation Systems (italics) and Major Vegetation Types (continuous line) in the Shire of Augusta-Margaret River (according to Beard, 1980).

Figure 5. The Existing Remnant Vegetation and Public Reserves in the Shire of Augusta-Margaret River.

Figure 6. Soil Systems of the Shire of Augusta-Margaret River.

Figure 7. Topographic View of the Shire of Augusta-Margaret River.

Figure 8. Major Drainage Systems of the Shire of Augusta-Margaret River.
The Native Vegetation Handbook for The Shire of Augusta-Margaret River is one of a series covering the agricultural region of Western Australia. Other Handbooks in the series are:

The Avon Catchment

The Shire of Beverley
The Shire of Brookton
The Shire of Bruce Rock
The Shire of Corrigin
The Shire of Cunderdin
The Shire of Kellerberrin
The Shire of Merredin
The Shire of Northam
The Shire of Pingelly
The Shire of Tammin
The Shire of Toodyay
The Shire of Trayning
The Shire of Wyalkatchem
The Shire of York

The Blackwood Catchment

The Shire of Boyup Brook
The Shire of Bridgetown-Greenbushes
The Shire of Broomhill
The Shire of Dumbleyung
The Shire of Katanning
The Shire of Kent
The Shire of Kojonup
The Shire of Narrogin
The Shire of Wagin
The Shire of West Arthur
The Shire of Wickepin
The Shire of Williams
The Shire of Woodanilling

The Shire of Mingenew
Shire of Augusta-Margaret River

Introduction

Purpose of this Booklet
This project has arisen from the need to provide data to people in rural communities, land conservation districts (LCDs) and local government authorities who manage the remnant native vegetation within rural areas, whether on a regional, catchment or local basis.

This booklet is one of a series covering the Blackwood River Catchment in the southwest of Western Australia. The management of native vegetation and rural land is closely related. It is vital that both native vegetation and rural land issues are considered within the context of their ecological areas of influence. Both have a wide range of effects on each other and as a consequence should be managed together. For example, native vegetation has an effect on the hydrology of rural land and nutrients can be transferred from rural land to remnants of native vegetation.

This booklet provides rural land managers with information relating to the natural resources of the Shire of Augusta-Margaret River including the existing vegetation, drainage systems and soils. Some of the problems relating to the management of natural resources in the Shire of Augusta-Margaret River and possible solutions to these problems are also discussed. By providing this information, it is hoped this booklet will contribute to the long term viability of the rural landscape and the conservation of native vegetation within the Shire.
Figure 1: Cadastral Boundaries for the Shire of Augusta - Margaret River.
Figure 2: Major, Secondary, Minor and Access Roads for the Shire of Augusta - Margaret River.
Figure 3: The Shire of Augusta - Margaret River in Relation to the Natural Resource Zones of the South-West Land Division of Western Australia.
Shire of Augusta-Margaret River

The Shire of Augusta-Margaret River, covers an area of 222,718 hectares. The south-western half of the Shire is located in the Blackwood River Catchment (see cover map) and is drained via the Blackwood River into the Hardy Inlet. The northern region of the Shire is largely covered by the Margaret River Catchment. The main townsites in the Shire include Augusta, Karridale and Margaret River (Figure 1).

The Shire's climate is regarded as Mediterranean, with cool, moist winters and hot, dry summers. Margaret River receives, on average, 1152 mm and Augusta 1003 mm rainfall per annum. Average maximum temperatures for Margaret River range from 28.2°C in February to 16.3°C in August, while average minimum temperatures range from 15°C in January to 8.0°C in August. The population of the Shire in 1993 was 5,100, but this is expected to increase significantly over the coming years (W.A. Municipal Directory, 1992/93). A major expansion of the horticultural industry took place during the 1970's, to the extent where such industries contribute more than one fifth of the total gross value of agricultural production for the Shire, which has averaged between $25 million and $50 million over the past 4 years. Other major local industries include dairying, beef, sheep, fishing, timber and viticulture. The cadastral boundaries in the Shire are shown in Figure 1, while all 1090 kilometres of road network in the Shire are shown in Figure 2.

The South-west of Western Australian has been divided into districts (called Natural Resource Zones) on the basis of their natural resources ie. vegetation type, drainage/catchment system and rainfall (Allison et al., 1993). The Shire of Augusta-Margaret River contains parts of four natural resource zones (No. 1, 2, 11, 12) (Figure 3) making it a mosaic of two vegetation subdistricts (Menzies and Warren Subdistricts) and three catchments (Blackwood River, Margaret River, and Busselton Coast drainage systems) within an area receiving between 700 and 1100 mm rainfall annually.

The Lower Blackwood Land Conservation District (LCD) was formed in 1992 and is based on the Shire's boundaries.
1 Tall Forest; karri
3 Medium Forest; jarrah - marri
22 Low Woodland; *Agonis flexuosa*
51 Sedgeland; reed swamps, occasionally with heath
563 Shrublands; *Acacia* species (scrub)
975 Low Woodland; jarrah
1108 Shrublands; *Acacia decpiens*
1109 Shrublands; peppermint scrub, *Agonis flexuosa*
1110 Low Woodland; jarrah & banksia

Figure 4: Major Vegetation Types in the Shire of Augusta - Margaret River.
Natural Resources of the Shire of Augusta-Margaret River-Past and Present

Native vegetation has been degraded in a variety of ways as a consequence of extensive clearing and agricultural practices. In the South-West of Western Australia, clearing for agricultural purposes has resulted in the removal of 85-95% of native vegetation. More than 80% of plant species, now extinct, were formerly found on land cleared for agricultural.

Physical factors such as soil and climate combine to produce natural ecological regions, within which the plant life is essentially similar. Western Australia is divided into three Botanical Provinces (i.e. natural ecological regions) - the South-Western, the Eremaean, and the Northern (Beard, 1980). The Botanical Provinces are in turn divided into Botanical Districts and then into Vegetation Systems. The Shire of Augusta-Margaret River lies within the South-Western Botanical Province, the Darling Botanical District and the Menzies (Southern Jarrah Forest) and Warren (Karri Forest) Subdistricts. It contains portions of three Vegetation Systems - Chapman, Boranup and Scott River (Beard, 1981) (Figure 4). Each of these Vegetation Systems consists of a series of plant communities occurring in a mosaic pattern and closely linked to topographic and soil features. To complement Beard’s broad vegetation descriptions, Smith’s Augusta/Busselton mapsheets (Smith, 1973) has also been used in describing vegetation communities in the Shire.

Brief Description of the Vegetation Systems
This section is based on the plant distribution studies of J.S. Beard and further detail can be obtained from the following reference - a) Beard, J.S., (1981). Vegetation Survey of Western Australia: Swan 1:1,000,000 Vegetation Series with Explanatory Notes. University of Western Australia Press, Perth.

The type of vegetation is closely related to the soil type on which it grows. In fact, many of the soil types of the Shire are recognised by their associated type of vegetation.

The Chapman Vegetation System represents the vegetation of the laterite-capped, generally undulating landscape of the Blackwood Plateau. The general cover is one of jarrah (Eucalyptus marginata)-marri (Corymbia calophylla) forest, frequently stunted by poor drainage conditions. Eucalyptus megacarpa and blackbutt (Eucalyptus patens) may occur locally, while low woodland of moonah (Melaleuca preissiana)
and Banksia spp. occupy damp areas. In the deep valleys near Margaret River, there are occasional areas of high open forest of karri (Eucalyptus diversicolor). Yellowish clay loam carries scrub of stunted jarrah, numerous shrubs and black gin (Kingia australis). On the gravel slopes of the Whicher Range, jarrah forms woodland with Eucalyptus haematoxylon and Banksia spp. The broad valleys of the upper reaches of the Margaret River and the swamps of the higher areas of the plateau support sedgeland. On the grey earths in the broader western valleys of the plateau, marri become the most frequent component of the open forest.

The Boranup Vegetation System extends along the coast from Cape Naturaliste to Irwin Inlet, covering the Leeuwin-Naturaliste Ridge and the coastal dunes of the Scott River Plain. On the exposed western slopes of the Ridge, Pimelea ferruginea ranges from heath to thicket. With decreasing exposure, peppermint (Agonis flexuosa) and/or Banksia spp. and jarrah dominate over a range of structural types from low forest to open low woodland. Jarrah may be associated in the low, open forest on leached sands and once off the coastal limestone develops with marri into forest. On deeply weathered older coastal limestone, where red soils have developed, tall karri forest is heavily supported. Where the slope is particularly steep, as to the east of Boranup Hill, the change from open heath to karri high open forest is abrupt, without intervening zones of low woodland or open forest. Forests of pure marri and woodlands of yate (Eucalyptus cornuta) and bullich (Eucalyptus megacarpa) occur on brown sands.

The Scott River System includes extensive stretches of seasonally swampy flats between the forests of the Chapman and Normalup Vegetation Systems and the coastal dunes of the Boranup Vegetation System, there is mainly jarrah-Banksia low woodland with Melaleuca spp. and an understorey of small shrubs and sedges. Isolated hummocks of lateritic material support jarrah in structures ranging from forest to low woodland and sandy ridges of Banksia low woodland. Along the Scott River there are some occurrences of karri high open forest and jarrah-marri open forest.

Current Extent of Native Vegetation
The total area of vegetation cover in the Shire of Augusta-Margaret River has not been as significantly reduced as many other shires in the middle and upper reaches of the Blackwood. This is largely a result of the significant areas of State Forest and timber reserves that has been previously set aside as timber resources. However,
Figure 5: Public Land and Native Vegetation Cover on Private Land in the Shire of Augusta - Margaret River.
much of the native vegetation remaining in public reserves and on private land is being threatened by increased urban and rural development in the Shire.

Approximately 71% of the Shire of Augusta-Margaret River remains covered by original native vegetation, 16% (37,516 hectares) of which is found on private land. The remaining 54% (121,519 hectares) exists as public reserves, water reserves, crown land, gravel pits etc., not all of which has a cover of native vegetation (Figure 5).

In the Shire of Augusta-Margaret River there are 2755 bush remnants on private land, all of which are regarded as being "remnant vegetation". However, only 5% of these are greater than 20 hectares in area (Beeston et al., 1995

| Vegetation classed as "remnant vegetation" has one or more of the following characteristics (Beeston et al., 1994) :
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Most closely reflects the natural state of vegetation for a given area.</td>
</tr>
<tr>
<td>* Has an intact understorey (if forest or woodland).</td>
</tr>
<tr>
<td>* Has minimal disturbance by agents of human activity.</td>
</tr>
</tbody>
</table>

There are five “A” Class Nature Reserves in the Shire of Augusta-Margaret River under the control of the Museum of Western Australia and the National Parks and Nature Conservation Authority for the conservation of flora and fauna. These range in size from 8275 hectares for Leeuwin-Naturaliste National Park to 16 hectares for Nature Reserve No. 8436. Other reserves include the Scott National Park (3273 hectares). In addition, there are a number of vested reserves under the control of the local government authority, the water authority of W.A. and water resources authority.

In 1994, Ted Griffin undertook a botanical survey of the Shire of Augusta-Margaret River (Griffin, 1995) (NB. Copies of the findings of this survey are available by contacting the Spatial Resource Information Group, Agriculture Western Australia on [08] 9368 3732). A total of 618 bush remnants in the Shire were surveyed by Griffin including four in detail. For the remnants surveyed in detail, each stand was classified according to its structure, major species, landform, soil type, drainage, percentage canopy cover and condition. This information and details of species recorded in each remnant are given in Appendices 4-7.
Wetlands
Wetlands are defined by the Wetlands Advisory Committee as "... areas of seasonally, intermittently or permanently waterlogged soils or inundated land whether natural or otherwise, fresh or saline eg. waterlogged soils, ponds, billabongs, lakes, swamps, tidal flats, estuaries, rivers and tributaries".

The rise of saline groundwater as a result of the clearing of native vegetation has been well documented throughout the agricultural region. However, as much of the lower Blackwood Catchment is largely forested, wetland salinity is not yet a significant problem in this region.

The principal wetland system in the Shire of Augusta-Margaret River is the lower reaches of the Blackwood River (Sue’s Bridge to Molloy Island) and its associated system of tributaries, including Spearwood Creek, Upper Chapman Brook, McLeod Creek, Rushy Creek and Glenarty Creek (Jaensch, 1992).

The Blackwood River originates 300 km to the east. The upper Blackwood catchment is highly disturbed as a result of agricultural practices, while the forested region of the lower catchment is less disturbed. Spearwood Creek and nearby creeks have only slightly disturbed catchments, while other heavily cleared catchments are highly disturbed. The creeks in the area are known to support the only known populations of the frogs, *Geocrinia alba* and *G. vitellina* and also is one of the few areas where the black bittern (*Dupetor flavicollis*) still occurs in the South-west region. Riparian vegetation includes fringing open forest and open/closed-scrub. Surrounding areas support mainly open forest and cleared land.

Fauna
In the Shire of Augusta-Margaret River, animals commonly seen include the western grey kangaroo (*Macropus fuliginosus*) the western brush wallaby (*Macropus irma*) and the echidna (*Tachyglossus aculeatus*) and reptiles including the bobtail (*Tiliqua rugosa*), the Western blue tongue lizard (*Tiliqua occipitalis*), the dугite (*Pseudonaja affinis affinis*), the mulga snake (*Notechis australis*) and a variety of geckos. Other animals which are considered to be the under threat of extinction but were sighted during biological surveys in the Shire (McKenzie, 1973; McKenzie and Youngson, 1975) include the tammar wallaby (*Macropus eugeni*), the red-tailed phascogale (*Phascogale culara*), the western mouse (*Pseudomys occidentalis*) and Carnaby’s cockatoo (*Calyptorhynchus funereus latirostris*). Most of these species are under threat because of introduced predators, loss of habitat and of their preferred food.
Since the surveys by McKenzie in 1973 and McKenzie and Youngson in 1975, there have been no specific faunal surveys have been undertaken in the Shire, although general reconnaissance surveys have been regularly been carried out by wildlife officers from the Department of Conservation and Land Management's Katanning District Office.

The clearing of large amounts of natural bushland for agriculture, the introduction of feral animals, alterations to fire regimes and other disturbances have caused the local extinction of 8 of the 43 species (19%) of mammals (excluding bats) recorded from the wheatbelt since European settlement. Only 12 of the 43 species are considered to be moderately common to abundant (Kitchener et al., 1980). Eight species of mammal are known to have disappeared from the wheatbelt region in the past 100 years region: the western barred bandicoot (*Perameles bougainville*), pig-footed bandicoot (*Chaeropus ecaudatus*), the bilby (*Macrotis lagotis*), the burrowing bettong (*Bettongia leuesur*), the rufous hare wallaby (*Lagorchestes hirsutus*), the banded hare wallaby (*Lagostrophus fasciatus*), the crescent-nailed tail wallaby (*Onychogalea lunata*) and the stick nest rat (*Leporillus* sp.). For a complete list of all mammals in the Katanning CALM region, see Appendix 8. For details of the reptile and frog species recorded see Appendix 9.

Most of the original species of birds still occur in the wheatbelt, although several species have been lost from particular nature reserves (Kitchener et al., 1982). Birds such as whistlers (*Pachycephala* spp.) and fairy wrens (*Malurus* spp.) have not coped well with the changes associated with clearing and are generally declining in numbers. They may well become locally extinct. Species such as the Carnaby's cockatoo and Major Mitchell's cockatoo (*Cacatua leadbeateri*) have undergone a significant reduction through loss of habitat (Saunders et al., 1985).

In the southwest of the State, 83% of the land birds (as opposed to ducks) are dependant on native vegetation for all or some of their annual requirements (Smith, 1987). Continued loss of these bird species can therefore be expected due to degradation of remnant vegetation and continued clearing. However, some species including galahs (*Cacatua roseicapilla*), ravens (*Corvus coromoides*), crested pigeons (*Ocyphaps lophotes*), magpies (*Cracticus tibicen*) and wood-ducks (*Chenonetta jubata*) have benefited from increased agricultural development and are increasing in numbers. For a complete list of all avifauna seen in the Shire see Appendix 10.
Rare and Endangered Flora
Eight of 232 species of Western Australian plants declared endangered are found in the Shire of Augusta-Margaret River (Graham, unpub.; Hopper et al., 1990).

The eight Rare and Endangered species of flora found in the Shire of Augusta-Margaret River are:

1. *Caladenia excelsa* (Giant spider orchid) - The tallest growing and largest flowered *Caladenia* found in Western Australia. Height of 90 cm. Flowers up to 30 cm long and 15 cm wide. Distributed along Leeuwin-Naturaliste Ridge in deep sandy soils amongst dense, low shrubs in banksia, jarrah and marri woodland. Flowering period - late September to October.

2. *Caladenia huegelli* (Grand spider orchid) - Closely resembles *C. georgiei* but has larger flowers and a much larger labellum. Flowering period - September to October

3. *Darwinia ferricola* - Domed bush, densely branched to 1m. Flowers are greenish-red in colour and are scented. Found on ironstone peaty sand in the Scott River Flats region. Flowering period - December to January.

4. *Drakaea micrantha* (Dwarf hammer orchid) - Grows to 30cm. Distinguished from *D. Thynniphila* by its diminutive flower, shorter, more-pouched labellum and small, predominantly veined leaf. Occurs in scattered populations in Perth and Albany. Flowering period - September to early October.

5. *Kennedia macrophylla* (Augusta kennedia) - A woody twiner, climbing 4 m or more. It has divided leaves, each leaflet to 7 cm long. Flowers are red with a yellow throat. Restricted to coastal granite areas in the Augusta region. Flowering period - September to November.

6. *Lambertia orbifolia* (Round-leaf honeysuckle) - An erect shrub to 4 m with stems and round opposing leaves to 5 cm in length. Grows in sandy laterite between Busselton and Scott River. Flowering period - January to February, May to July.

7. *Meziella trifida* - A red-leaved prostrate shrub to 20 cm in diameter. It has red flowers and fruit. Occurs on winter wet flats and low open heath with scattered *Melaleuca preissiana* (moonah) on grey, sandy clay over clay east of Augusta. Flowering period - October.
8. *Verticordia plumosa* var. *ananeotes*

There are compelling reasons for focussing conservation efforts on endangered species. From an aesthetic perspective, it is clear that there lies an opportunity to appreciate and study the biological diversity and attractiveness of many of these endangered flora. Equally compelling, is the fact that the extinction of a species constitutes an irreplaceable lost opportunity for plant utilisation by humans. Some of the world's rare species have proven to be of outstanding economic value. Also, as so little is known of the biochemistry of many of these species, there lies the possibility of discovering cures to major human diseases. For example, it has recently been publicised that smokebush (*Conospermum* sp.) may possibly provide a potential cure for AIDS.
Land Resources

Geology
The Shire of Augusta-Margaret River is divided into four physiographic regions (Tille and Lantzke, 1990):

1. *The Blackwood Plateau*; is a gently undulating plateau formed on laterized sedimentary rocks that form the Perth Basin. These have been intensely dissected in some areas to form rolling, low hills and rises. It is located in the centre of the Leeuwin-Naturaliste area, lying to the east of the Margaret River Plateau.

2. *The Margaret River Plateau* is a gently undulating plateau which is dissected by a series of valley systems. It has formed on the laterized granitic and gneissic basement rock of the Leeuwin Block. It is between 5 and 15 km wide and extends from Dunsborough to Augusta.

3. *The Leeuwin-Naturaliste Coast*; is a narrow strip of land, 0.2 to 6 km wide running along the coast between Cape Naturaliste to Cape Leeuwin. It is a discontinuous ridge of Tamala Limestone, with the underlying Leeuwin Block granite being exposed in places.

4. *The South Coast Plain*; is a low lying, poorly drained flat to gently undulating plain formed on Quaternary sediments. It is 15km wide and extends eastwards from the Blackwood River with a strip of high dunes running along the Southern Ocean coast.

Soils
The lower Blackwood, of which the Shire of Augusta-Margaret River is a major part, significantly differs in terms of landform and geology to the rest of the catchment. To the west of the Yilgarn Block there is a fall of approximately 150 m, resulting in a much less deeply incised landscape. The soils information is based on the work of Tille and Lantzke (1990) and Tille (1996), from the Land Resources Series available from Agriculture Western Australia. Augusta-Margaret River is dominated by two landform zones, the *Donnybrook Sunkland Zone* and the *Leeuwin Block Zone* (Tille, 1996). These Zones are subdivided into Land Systems (areas with recurring patterns of landforms, soils and vegetation)
The *Donnybrook Sunkland Zone* extends 60 km westwards from the Darling Scarp near Nannup to the edge of the *Leeuwin Block Zone* near the mouth of the Blackwood River.

The Donnybrook Sunkland Zone varies from flat to undulating terrain formed over Cretaceous and Jurassic Basin sedimentary rocks. It rises gradually from the Southern Ocean coastline to a height of 120 to 180 m above sea level in the north. Here it consists of the gently undulating, lateritic plateau with grey and yellow-brown, sandy gravels and deep, loose sands. The plateau has been dissected by the Blackwood River and its tributaries to form shallow valleys, the floors of which lie between 20 and 80 m above sea level. Similar soils are found on the slopes of these valleys to those on the plateau, with grey-brown sands and loams also becoming common in the west.

In the south, the plateau merges with low-lying coastal plain and is a poorly drained area formed on Quaternary sediments. Soils here are deep, loose white or grey sands, often over coffee rocks. There are some deep, coloured sands and loams on the river flats. On the southern sands and loams on the river flats. On the southern boundary of the coastal plain are coastal dunes of grey calcareous sands.

There is a risk of water erosion on areas where sloping is high. Waterlogging is a problem in low lying areas, particularly on the Scott River Plain, where there is also a risk of nutrient leaching from these soils. Sand dunes on the Scott River Plain and along the south coast are prone to wind erosion.

The Leeuwin Block Zone covers a narrow strip of land, less than 10 km wide, on the western edge of the lower catchment. It extends from Augusta through Karridale to Witchcliffe. The Leeuwin Block Zone was formed on the Leeuwin Block which is made up of Proterozoic granitic rocks overlain by Tertiary laterite and Quaternary limestone. The dominant feature is a lateritic plateau which sits 20 to 80 m above sea level. Soils on the plateau include yellow-brown sandy and gravelly loams and grey-brown sands and loams. Dissection of the eastern margin of the Leeuwin Block has produced slopes and valleys with loamy gravels, loamy duplex soils and loams grading into clay. The western margin of the plateau is overlain by a ridge of limestone and by yellow and red deep loose siliceous sands.

Large areas of the uplands are highly susceptible to waterlogging, while there is some risk of water erosion in the valleys and of wind erosion along the coast.
Soil Landscape Systems for the Shire are described below and are shown in Figure 6.

Blackwood Plateau System (BLP): Lateritic plateau in the Donnybrook Sunkland. Sandy gravel, loamy gravel, loamy gravel and deep sand. The predominant vegetation is jarrah-marri forest.

Blackwood River System (BLR): Alluvial flats, on the lower Blackwood River. The major soils are deep sand (pale and yellow), non-saline wet soils and yellow sandy earth. Heaths, sedgelands and jarrah-marri-paperbark woodland and forest form the major vegetation.

Cowaramup Uplands System (CWU): Lateritic plateau in the Leeuwin Zone. Main soils are sandy gravel, loamy gravel and grey sandy duplex. The predominant vegetation is jarrah-marri forest.

Glenarty System (GLE): Granitic valleys in the southern Leeuwin Zone. Major soil types are gravel, sandy duplex, loamy duplex, deep sand and non-saline wet soil. Main vegetation type is jarrah-marri forest.

Gracetown Ridge System (GTR): Limestone ridge, in the coastal edge of the Leeuwin Zone. Major soils include yellow deep sand and red deep sand. Predominant vegetation types include coastal scrub, peppermint woodland and jarrah-marri-karri forest.

Goodwood Valleys System (GVW): Valleys of the Donnybrook Sunkland. Major soils are sandy gravel, loamy gravel and deep sand. The predominant vegetation is jarrah-marri forest and woodland.

Kilcarnup Dune System (KCD): Coastal dunes overlying limestone and rocky headlands in the Leeuwin Zone. Main soils are calcareous deep sand and calcareous stony soil. Major vegetation type is coastal scrub.

McLeod System (MLO): Rises and low hills of the western Donnybrook Sunkland. Predominant soils are sandy gravel, grey deep sandy duplex and loamy gravel. Main vegetation type is jarrah-marri forest.
Figure 6: Soil - Landscape Systems for the Shire of Augusta - Margaret River.
Nillup Plain System (NLP): Poorly drained plain in the southern Donnybrook Sunkland. Major soils include sandy gravel, non-saline wet soil;, grey deep sandy duplex, loamy gravel and deep pale sands. Jarrah-marri-paperbark woodland is the chief vegetation.

Scott River Plain System (SRP): Poorly drained coastal plain in the southern Donnybrook Sunkland. Non-saline wet soil and deep pale sand are the main soil types. Chief vegetation types include heaths, sedgelands and jarrah-marri-paperbark woodland.

Treeton Hills System (TRT): Rises and low hills of the western Donnybrook Sunkland. Main soil types are sandy gravel, grey deep sandy duplex and loamy gravel. Jarrah-marri forest is the predominant vegetation.

Topography
The topographic feature most notable in the Shire of Augusta-Margaret River is the Hardy Inlet at the mouth of the Blackwood River and St Patrick’s Elbow, a short distance upstream. In the western part of the Shire, the topography is more undulating with generally steeper slopes and greater sediment accumulation on slopes. This part of the Shire has been more extensively eroded than the eastern region because of the higher rainfall. Other features of local significance are the numerous soaks, springs and rockholes throughout the Shire. Figure 7 provides a digital elevation model of the Shire of Augusta-Margaret River, showing metres above sea level.
Figure 7: Topographical View of the Shire of Augusta - Margaret River.
Land Management and Land Degradation Issues of the Shire

Since settlement in the south west of Western Australia and the subsequent clearing and replacement of native vegetation with crops and pastures, problems have arisen for both agricultural production and native vegetation conservation. Some of the most obvious problems are associated with changes in hydrology eg. rising water table with associated salinity and waterlogging. Water erosion and wind erosion are a problem on unprotected soils.

There are several forms of land degradation that occur within the Shire of Augusta-Margaret River including salinity, waterlogging, wind erosion, water erosion, soil acidification and subsoil compaction. An integrated approach to tackling these problems uses farm planning to: reorientate paddock boundaries; revegetate and fence drainage lines; protect and connect existing vegetation and establish windbreaks and replant on both recharge and degraded areas. In addition, altering management practices to minimum and zero tillage will benefit both agricultural production and wildlife conservation.

Most farmers now recognise that replanting the trees and shrubs that existed prior to clearing is one of the most effective means of reversing the current trend towards land degradation. One of the main problems has been a lack of information about how to go about revegetation and what, when and where to plant. The 'Revegetation Guide to the Central Wheatbelt' (Lefroy et al., 1991) is an excellent resource book which attempts to address these problems by providing lists of local species grouped according to the specific soil types of a particular area.

Clearing
The Shire of Augusta-Margaret River, being a more recently established horticultural area, has been less extensively cleared than many other earlier settled shires. As a consequence, there remains a relatively high proportion of native vegetation on farms or as public reserves.

Current guidelines recommend that for an area receiving less than 500 mm/annum rainfall (eg Shire of Augusta-Margaret River), the minimum proportion of native vegetation considered necessary to be left to use sufficient groundwater to ensure water tables remain stable in that sub-catchment is 20% or 2000 hectares/catchment. (Clark, 1992; Holm, 1994). Currently, the Shire has approximately 30% remnant vegetation cover.
Continued vegetation clearance is obviously not compatible with the desire for native vegetation to persist. Much of the south west was cleared during major agricultural developments following World War II, and little thought was given to nature conservation requirements.

There are several actions being undertaken by the state government and local government authorities to address the clearing of native vegetation. Land clearing on private land is currently under the control of the Soil and Land Conservation Act which requires all landowners to give notice to the Commissioner of Soil Conservation of their intent to clear land. The guidelines for assessing notices of intent (NOI) to clear land are directed at preventing further land degradation problems (Select Committee into Land Conservation, 1992). In addition, many local government authorities have implemented planning schemes which may give them scope to effectively control the clearing of land.

A great deal of native vegetation was set aside by the government, as crown reserves for townsites, water catchments and sites of gravel extraction etc. Many of these patches of native vegetation were designated by the government as conservation reserves in the 1960s and 1970s. However, their conservation value varied because most of the patches of vegetation that are now nature or conservation reserves are fragmented and represent only a very small percentage of the region's vegetative cover.

Waterlogging

Waterlogging is the temporary or permanent saturation of the soil by rainfall or runoff and is usually a result of poor drainage. The problem is often exacerbated by excessive or inappropriate clearing of deep-rooted native vegetation and soil compaction by livestock and heavy machinery. The principal cause of waterlogging is a combination of excess rainfall, poor external drainage (runoff), poor internal drainage (water movement in the soil profile) and the inability of the soil to store much water.

Waterlogging is most prevalent in the 400-500 mm rainfall area of the wheatbelt and the problem is usually seasonal. However, areas of soils with low permeability in valleys downslope of areas which shed water will be prone to waterlogging in years of high rainfall. The problem is slowly increasing in the wheatbelt because of the continued clearing in upland areas and the effects of modern agricultural practices in
Figure 8: Major Drainage Systems of the Shire of Augusta - Margaret River.
reducing water infiltration. Waterlogged soils in Western Australia are also often salt-affected (Barrett-Lennard et al., 1990). There are a number of indicators of waterlogging:

* The presence of weeds such as canary grass (Phalaris sp.) that tolerate waterlogging.
* The absence of waterlogging-sensitive species such as clovers.
* The presence of red, yellow or grey mottles in the soil profile (Cox and McFarlane, 1990).

In the Shire of Augusta-Margaret River, waterlogging is a major problem in the upland areas of the Leeuwin Block and the low lying areas of the Scott River Plain. These problems are probably linked to clearing within the Shire and in particular, the clearing of lateritic landscapes where water use of even the most productive annual pastures and crops is relatively low and hence the groundwater recharge is high. Figure 8 shows the areas of the Shire which are susceptible to waterlogging and inundation. The establishment of vegetation with high water use in strategic locations may help to ameliorate the problem of waterlogging in these catchments.

Rising Water Tables and Salinity

Rising water tables and salinity is not a serious problem in the Shire of Augusta-Margaret River. This is a result of the large percentage of deep-rooted perennial vegetation that remains in the Shire.

Wind Erosion

Wind erosion is the action of the wind removing and redepositing soil. It can result in the loss of vegetation through sand blasting and smothering, and it reduces plant growth because of the loss of soil structure and fertility. The predominantly sandy-surfaced soils of Western Australia are naturally prone to wind erosion when vegetation is insufficient to protect the soil surface and at least 90% of the wheatbelt is vulnerable to wind erosion if soils are mismanaged (Carter et al., 1992). The most susceptible areas are those which are prone to sustained droughts extended over several growing seasons. The extent and severity of wind erosion depends on seasonal conditions.
The Shire of Augusta-Margaret River, being largely comprised of lateritic and pallid zones clayey soils is not as severely affected by wind erosion as some Shires (Select Committee in Land Conservation Discussion Paper 2, 1990). However, in the valleys of the Leeuwin Block, the sand dunes of Scott River Plain, and along the south coast, areas are prone to wind erosion. The establishment of windbreaks and shelterbelts will help in ameliorating the effect of wind erosion. Ideally, windbreaks should be several rows wide and include a mix of trees and shrubs. Shelterbelts can also serve as corridors for wildlife and may link up areas of existing vegetation.

Water Erosion
Water erosion is the loss of topsoil due to runoff from the soil surface. Water erosion occurs in three forms of increasing severity: sheet, rill and gully erosion.

Western Australian soils are particularly susceptible to water erosion because they are inherently infertile and have a sandy, loose texture. Their susceptibility is further increased by cultivation, overgrazing and stock trampling. An estimated 0.7 million hectares of the 6 million hectares of land cropped annually in the wheatbelt is affected by water erosion.

In the Shire of Augusta-Margaret River, water erosion can be expected to occur on sloping areas within the Donnybrook Sunkland Zone. Clayey soils tend to be more prone to water erosion (State of the Environment Report, 1992).

Contour banks can reduce the speed of runoff water flow. They do this by restricting all cultivation to the contour, by diverting any runoff to a well grassed waterway, or by storing excess water in the channel above the bank. Vegetation can also reduce the possibility of water erosion by reducing the impact of raindrops.

Managing Existing Vegetation
Protecting existing vegetation is often easier than replanting. However, the survival of existing vegetation is affected by a number of factors including: grazing by stock of unfenced bush (passive clearing); changes in hydrology; increased exposure to the elements; increased fertiliser regimes; herbicide drift and weed invasion. Native plants are often choked or covered by fast growing introduced plants that become weeds when they escape from pastures. Weeds compete with native plants for water and nutrients and often don't provide the food and shelter that wildlife need.
The long term solution to the problems of land degradation and the loss of local plant and animal species lies in taking a holistic approach to the management of natural resources within the Shire of Augusta-Margaret River.

Specific recommendations on how to manage existing bush are provided in 'Managing your Bushland: A Guide for Western Australian Landowners' (Hussey and Wallace, 1993).
Bringing it all together

Integrated Management for Land and Nature Conservation in the Shire
The wheatbelt of Western Australia today has severe nature conservation and agricultural problems resulting from the rapid and excessive clearing of native vegetation. The problems associated with land degradation and the maintenance of native vegetation are problems which cannot be halted by onsite management alone. An integrated catchment/land conservation district and farm-based approach needs to ensure long term agricultural production, optimal water use and the maintenance of the diversity of flora and fauna. Retention of remnant vegetation, rehabilitation of degraded areas and strategic revegetation are essential components of this approach. Ownership of the problems and solutions at a local scale is the key to success.

As so much of the conservation resource lies under the control of private landowners and the local government authorities, the responsibility for the coordination of the conservation and management of natural resources must ultimately stem from these locally based groups. The Shire of Augusta-Margaret River has a number of different organisations working towards land and nature conservation in the Shire.

The Lower Blackwood Land Conservation District Committee (LCDC) has been a prime mover in this field.

Projects in the Shire
A combination of measures aimed at protecting remnant vegetation, strategically revegetating areas degraded or void of native vegetation and combating land degradation problems in the Shire of Augusta-Margaret River have proved to be an effective method of achieving positive results.

One major impediment to farmers’ motivation to conserve their remnant vegetation is the cost of fencing. This problem has been partially alleviated by the Remnant Vegetation Protection Scheme (RVPS). The Remnant Vegetation Protection Scheme was developed by the State Government in 1988 to enhance soil and nature conservation by protecting native vegetation on farm land. It has not been a scheme which has been used so far, in the Shire of Augusta-Margaret River, as the vast majority of native vegetation in the Shire is protected through the reserve and State Forest system.
There are several examples of projects aiming to strategically revegetate sparsely vegetated areas currently underway in the Shire of Augusta-Margaret River.

The One Billion Trees (OBT) Program was initiated in 1989 by the Federal Government with the aim of catalysing revegetation projects aimed at land and nature conservation. In 1992, the Nyabing-Pingrup LCD received $2003 towards the Slees greening and water use project, while in 1994, the South Bryde Catchment Group received $14,740 towards the cost of revegetation the Lake Bryde Drainage line to link two nature reserves and to control salinity.

Plants for Conservation, a program managed by Greening Western Australia and sponsored by ALCOA provided the Nyabing/Pingrup LCDC with 6000 seedlings to plant in bush corridors in recharge areas to control wind erosion, reduce recharge and to link existing vegetation.

Road verges in the Shire of Augusta-Margaret River were surveyed for their vegetation conservation status with the assistance of the Roadside Conservation Committee (RCC). The surveys were undertaken by community volunteers using a method developed by the RCC. To date 26.7% (431.8 km) of the Shires 1619 km of road network has been surveyed. Further surveys are expected to be carried out in the near future and a relevant map showing the conservation values of roadside vegetation in the Shire should be available when surveys are completed.

The Shire of Augusta-Margaret River has not received any funding from the Save the Bush Program since its inception in 1989.

The Nyabing/Pingrup Land Conservation District Committee, has received support from the National Landcare Program (NLP) through the National Soil Conservation Program (NSCP) for 3 projects. The first, in 1989/90, was the Nyabing/Pingrup LCD Tree Planting Project. The NSCP provided $9,000 to purchase a Chatfield tree planting machine. In 1990/91, the LCD applied to the NSCP for more than $300,000 to assist in achieving sustainable agriculture in the region. It was recommended that the LCD combine their project with the Frankland Below Gordon LCD and Gnowangerup LCD project. There have been three State Landcare funded projects in the Shire of Augusta-Margaret River since 1989/90, many of which have involved cooperation with neighbouring Shires. Details of each of these are outlined in detail in Appendix 11.
Reducing the cost of conservation

It is now widely recognised that planting native trees and shrubs can be used to remedy land degradation problems. However, the cost of revegetation is a relatively expensive practice. Protecting remnant vegetation and planting native trees and shrubs are some of the most cost effective ways of combating land degradation. Initial costs are offset by long-term increases in productivity and decreases in land degradation.

To reduce the establishment costs for vegetation projects, a landholder could consider:

* cheaper fencing - (electric or re-cycled)
* collecting native plant seed from nearby sources instead of buying it (NB. if the seed collector does not own the land, a licence will be needed. Check with the CALM, Manjimup Regional Office for details).
* growing their own seedlings instead of buying in.
* direct seeding instead of planting seedlings
* include deep-rooted perennial fodder species for multiple use of revegetation areas.

Developing new products and industries from planted trees has the potential to provide farmers with an additional source of income. Some possibilities for the development of tree-farm products include eucalypt and tea tree oils; tannins from acacia and eucalypt species; cut wildflowers and wildflower seeds, provision of firewood, particularly from cleared areas; and value-added wood products such as tool handles, craftwood and laminated wood products for furniture manufacture. Contact CALM Katanning for advice (08) 98211 296.
References

Holm, A. (1994). *Procedures for the Administration and Assessment of Clearing and Protection of Native Vegetation in Western Australia*. Department of Agriculture Western Australia, South Perth.

Further Reading

Practical Management

General Reading

Local Contacts

Lower Blackwood Land Conservation District Committee Secretary - Maxine Patmore, Phone: (08) 97582 256

Lower Blackwood Land Conservation District Committee Chairperson - Dick Hancock, Phone: (08) 97582 261

Shire of Augusta-Margaret River Offices, Town View Terrace, PO Box 61, Margaret River, Phone: (08) 97572 244

Agriculture Western Australia, Project Officer - Ben Rose, Phone: (08) 97711 299

Department of Conservation and Land Management Manjimup District Office - Phone: (08) 97717929.

Blackwood Catchment Co-ordinating Group Centre, Co-ordinator - Sue Masterson. P.O. Box 27, Boyup Brook, 6244. Phone: (08) 97651401
Appendix 1.

Dominant Plant species list for the Chapman Vegetation System, Menzies Subdistrict (Beard, 1981)

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banksia sp.</td>
<td>Yate</td>
</tr>
<tr>
<td>Eucalyptus cornuta</td>
<td>Mountain marri</td>
</tr>
<tr>
<td>Eucalyptus haematoxylin</td>
<td>Bullich</td>
</tr>
<tr>
<td>Eucalyptus megacarpa</td>
<td>Blackbutt</td>
</tr>
<tr>
<td>Eucalyptus patens</td>
<td>Grasstree</td>
</tr>
<tr>
<td>Kingiæ australis</td>
<td>Moonah</td>
</tr>
<tr>
<td>Melaleuca preissiana</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2.

Dominant Plant species list for the Boranup Vegetation System, Menzies Subdistrict (Beard, 1981)

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonis flexuosa</td>
<td>Peppermint tree</td>
</tr>
<tr>
<td>Ammophila arenaria</td>
<td>Marram grass</td>
</tr>
<tr>
<td>Banksia sp.</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus diversicolor</td>
<td>Karri</td>
</tr>
<tr>
<td>Eucalyptus marginata</td>
<td>Jarrah</td>
</tr>
<tr>
<td>Corymbia calophylla</td>
<td>Marri</td>
</tr>
<tr>
<td>Eucalyptus cornuta</td>
<td>Yate</td>
</tr>
<tr>
<td>Eucalyptus megacarpa</td>
<td>Bullich</td>
</tr>
<tr>
<td>Pimelia ferruginea</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3.

Dominant Plant species list for the Scott River Vegetation System, Menzies Subdistrict (Beard, 1981)

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus marginata</td>
<td>Jarrah</td>
</tr>
<tr>
<td>Banksia sp.</td>
<td></td>
</tr>
<tr>
<td>Melaleuca sp.</td>
<td></td>
</tr>
<tr>
<td>Viminaria sp.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 4.

Botanical Information and Species list for stands in Remnant AUG02613 (Griffin, 1995)

Augusta - Margaret River Shire, Margaret River, west;
Survey date: 02/11/94
Location: 33° 55' 53" latitude, 115° 5' 0" longitude;

Stand: AUG02613 1
Structure (Muir 1977): open woodland/low forest a/heath b/dwarf scrub c/open dwarf scrub
Major spp.: *Eucalyptus diversicolor*, *Agonis flexuosa*, *Corymbia calophylla*
Landform: lower slope, slope - 1°
Soil: brown loamy sand
Drainage: good, winter damp
Percentage canopy cover: 10% bare ground; 80% litter cover; 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02613 2
Structure (Muir 1977): scattered trees/open dwarf scrub c/low heath d/open herbs;
Major spp.: *Hibbertia hypericoides*, *Eucalyptus marginata* ssp. *marginata*, *Corymbia calophylla*
Landform: bench, slope - 3°
Soil: grey sand/brown sandy loam/granite
Drainage: poor, winter damp
Percentage canopy cover: 10% bare ground; 50% litter cover; 10% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02613 3
Structure (Muir 1977): woodland/low woodland a/scattered tall shrubs/heath b/low heath d
Major spp.: *Corymbia calophylla*, *Eucalyptus marginata* ssp. *marginata*, *Xanthorrhoea preissii*
Landform: upper slope, slope - 2°
Soil: brown loamy sand
Drainage: good
Percentage canopy cover: 15% bare ground; 80% litter cover; 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02613 4
Structure (Muir 1977): woodland/low woodland a/open low scrub b/dwarf scrub c/dwarf scrub d
Major spp.: *Eucalyptus marginata* ssp. *marginata*, *Banksia attenuata*, *Podocarpus drouinianus*
Landform: plain, slope - 1°
Soil: grey sand
Drainage: good
Percentage canopy cover: 15% bare ground; 45% litter cover; 1% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.
Stand: AUG02613 5
Structure (Muir 1977): woodland/low woodland b/low scrub b/dwarf scrub d/open
low sedges
Major spp.: Eucalyptus marginata ssp. marginata, Agonis flexuosa, Corymbia
calophylla
Landform: plain, slope - 1°
Soil: grey sand
Drainage: good
Percentage canopy cover: 10% bare ground; 90% litter cover; 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02613 6
Structure (Muir 1977): woodland/low woodland b/dwarf scrub c/low heath d
Major spp.: Bossiaea disticha, Hibbertia furfuracea, Corymbia calophylla
Landform: rise, slope - 1°
Soil: brown sand
Drainage: good
Percentage canopy cover: 10% bare ground; 80% litter cover; 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02613 7
Structure (Muir 1977): scattered trees/low forest a/low scrub a/dwarf scrub c/dwarf
scrub d/open herbs
Major spp.: Agonis flexuosa, Templetonia retusa, Eucalyptus marginata ssp.
Marginata
Landform: rise, slope - 1°
Soil: orange sand/Tamala limestone
Drainage: good. 15% bare ground
Percentage canopy cover: 40% litter cover; 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02613 8
Structure (Muir 1977): open tree mallee/scrub/low heath c/dwarf scrub d/open herbs;
Major spp.: Eucalyptus marginata ssp. marginata, Agonis flexuosa, Hibbertia
furfuracea
Landform: rise, slope - 2°
Soil: orange sand/Tamala limestone
Drainage: good.
Percentage canopy cover: 10% bare ground; 70% litter cover; 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02613 9
Structure (Muir 1977): low woodland a/scrub/low scrub b/open herbs
Major spp.: Eucalyptus marginata ssp. marginata, Agonis flexuosa, Corymbia
calophylla
Landform: mid slope, slope - 3°
Soil: grey sand
Drainage: good
Percentage canopy cover: 20% bare ground; 90% litter cover; 6% weeds
Condition (M.E. Trudgen in Griffin, 1994): Good; long unburnt.

Stand: AUG02613 10
Structure (Muir 1977): forest/thicket/heath b/dwarf scrub c/open dwarf scrub d/open
tall sedges
Major spp.: Eucalyptus diversicolor, Trymalium floribundum ssp. trifidum,
Lepidosperma effusum
Landform: channel bank, Slope - 1°
Soil: brown sandy loam
Drainage: poor, winter damp
Percentage canopy cover: 0% bare ground; 95% litter cover; 1% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Species List

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia cochlearis</td>
<td>Rigid wattle</td>
</tr>
<tr>
<td>Acacia divergens</td>
<td>Prickly Moses</td>
</tr>
<tr>
<td>Acacia pulchella var. pulchella</td>
<td>Peppermint tree</td>
</tr>
<tr>
<td>Acacia urophylla</td>
<td>Silvery hairgrass</td>
</tr>
<tr>
<td>Agonis flexuosa</td>
<td>Pimpernel</td>
</tr>
<tr>
<td>Aira caryophyllea</td>
<td>Sweet vernal grass</td>
</tr>
<tr>
<td>Anagallis arvensis</td>
<td>Candle cranberry</td>
</tr>
<tr>
<td>Anthoxanthum odoratum</td>
<td>Acorn banksia</td>
</tr>
<tr>
<td>Astroloma ciliatum</td>
<td>Bull banksia</td>
</tr>
<tr>
<td>Banksia attenuata</td>
<td>Swan River daisy</td>
</tr>
<tr>
<td>Banksia grandis</td>
<td>Quaking grass</td>
</tr>
<tr>
<td>Bosisia disticha</td>
<td>Shivery grass</td>
</tr>
<tr>
<td>Bosisia linophylla</td>
<td>Milkmaids</td>
</tr>
<tr>
<td>Brachycome iberidifolia</td>
<td>Pale grass-lily</td>
</tr>
<tr>
<td>Bridelia inedt</td>
<td>Grass lily</td>
</tr>
<tr>
<td>Briza maxima</td>
<td>Cowslip orchid</td>
</tr>
<tr>
<td>Briza minor</td>
<td>Pink fairy orchid</td>
</tr>
<tr>
<td>Burchardia umbellata</td>
<td>White fairy orchid</td>
</tr>
<tr>
<td>Caesia micrantha</td>
<td>Dodder laurel</td>
</tr>
<tr>
<td>Caesia parviflora</td>
<td>Pointed centalopis</td>
</tr>
<tr>
<td>Caladenia excelsa</td>
<td>Wiry centalopis</td>
</tr>
<tr>
<td>Caladenia flavusubsp. sylvestris</td>
<td>Blue quill</td>
</tr>
<tr>
<td>Caladenia flava</td>
<td>Chorilaena</td>
</tr>
<tr>
<td>Caladenia latifolia</td>
<td>Common white clematis</td>
</tr>
<tr>
<td>Caladenia marginata</td>
<td></td>
</tr>
<tr>
<td>Cassytha racemosa</td>
<td></td>
</tr>
<tr>
<td>Centrolepis aristata</td>
<td></td>
</tr>
<tr>
<td>Centrolepis drummondiana</td>
<td></td>
</tr>
<tr>
<td>Centrolepis polygonyx</td>
<td></td>
</tr>
<tr>
<td>Chamaescilla corymbosa</td>
<td></td>
</tr>
<tr>
<td>Cheilanthes austrotenuijolia</td>
<td></td>
</tr>
<tr>
<td>Chorilaena quercifolia</td>
<td></td>
</tr>
<tr>
<td>Clematis inedt</td>
<td></td>
</tr>
<tr>
<td>Clematis pubescens</td>
<td></td>
</tr>
<tr>
<td>Comesperma confertum</td>
<td></td>
</tr>
<tr>
<td>Conospermum capitatum</td>
<td></td>
</tr>
<tr>
<td>Conostylis aculea subsp. aculeata</td>
<td></td>
</tr>
<tr>
<td>Conostylis aculeata</td>
<td></td>
</tr>
<tr>
<td>Craspedia inedt</td>
<td></td>
</tr>
<tr>
<td>Craspedia variabilis</td>
<td></td>
</tr>
<tr>
<td>Cryptandra mutila</td>
<td></td>
</tr>
<tr>
<td>Cvathoeca avenacea</td>
<td></td>
</tr>
<tr>
<td>Danthonia caespitosa</td>
<td></td>
</tr>
<tr>
<td>Darwinia citriodora</td>
<td></td>
</tr>
<tr>
<td>Daucus glochidiatus</td>
<td></td>
</tr>
<tr>
<td>Daviesia horrida</td>
<td></td>
</tr>
<tr>
<td>Dichondra repens</td>
<td></td>
</tr>
<tr>
<td>Drosera glanduligera</td>
<td></td>
</tr>
<tr>
<td>Drosera pallida</td>
<td></td>
</tr>
<tr>
<td>Empodisma gracillimum</td>
<td></td>
</tr>
<tr>
<td>Lemon-scented darwinia</td>
<td></td>
</tr>
<tr>
<td>Australia carrot</td>
<td></td>
</tr>
<tr>
<td>Prickly bitter-pea</td>
<td></td>
</tr>
<tr>
<td>Kidney weed</td>
<td></td>
</tr>
<tr>
<td>Pimpernel sundew</td>
<td></td>
</tr>
<tr>
<td>Pale rainbow</td>
<td></td>
</tr>
</tbody>
</table>
Eriostemon spicatus
Corymbia calophylla
Eucalyptus diversicolor
Eucalyptus marginata
Eucalyptus megacarpa
Eucalyptus densifolia
Freesia indet
Galium murale
Gnaphalium sphaericum
Hakea amplexicaulis
Hakea lissocarpha
Hakea oleifolia
Hakea ruscifolia
Hardenbergia comptoniana
Hibbertia amplexicaulis
Hibbertia cuneiformis
Hibbertia cunninghamii
Hibbertia furfuracea
Hibbertia grossulariifolia
Leucopogon propinquus
Leucopogon verticillatus
Levenhookia pusilla
Levenhookia stipitata
Lobelia heterophylla
Lobelia tenuior
Lomandra hermanni
Lomandra micrantha
Loxocarya fasciculata
Luzula meridionalis
Lyperanthus nigricans
Macrozamia riedlei
Melaleuca thymoides
Microlaena stipoides var. stipoides
Microlaena stipoides
Millotia myosotidifolia
Millotia pilosa
Monadenia bracteata
Olearia axillaris
Opercularia hispidula
Opercularia volubilis
Oxalis corniculata
Oxyclobium linearifolium
Patersonia umbrosa
Persoonia articulata
Persoonia longifolia
Petrophaga velutina
Phebalium aniceps
Phlebocarya ciliata
Phyllanthus calycinus
Pimelea lanata
Pimelea rosea
Plantago varia
Platsace tenuissima
Podocarpus drouynianus
Poranthera microphylla
Pteridium esculentum
Pterostylis nama
Quinetia urvillei
Pepper and salt
Marri
Karri
Jarrah
Bullich
Small goosegrass
Star cudweed
Prickly hakea
Honey bush
Dungyn
Candie hakea
Native wisteria
Cutleaf hibbertia
Tassel flower
Midget stylewort
Common stylewort
Winged-seeded lobelia
Slender lobelia
Small-flower mat-rush
Field woodrush
Red beak orchid
Zamia
Weeping grass
Coastal daisybush
Hispid stinkweed
Twining stinkweed
Redwood sorrel
Narrow-leaved oxyllobium
Yellow flags
Snottygobble
Velvet pink
Blister bush
False boronia
Rose banjine
Variable plantain
Small poranthera
Bracken
Snail orchid
Ramunculus colonorum Common buttercup
Rhodanthe citrina Australian bluebell
Senecio lautus Purple tassels
Sollya heterophylla Lovely triggerplant
Sowerbaea laxiflora Pink fountain triggerplant
Stackhousia monogyna Book triggerplant
Stylium amoenum Thick-leaved triggerplant
Stylium brunonianum subsp. brunonianum Cow kicks
Stylium brunonianum Pink fountain triggerplant
Stylium calcaratum Book triggerplant
Stylium crassifolium Thick-leaved triggerplant
Stylium schoenoides Cow kicks
Stylium spathulatum subsp. spathulatum Cow kicks
Synaphea gracillima Cockies tongues
Templetonia retusa Forgest ricegrass
Tetraria octandra Blue lady orchid
Tetrarrhena laevis Slender sun orchid
Tetratheca setigera Native parsnip
Thelymitra crinita Twining fringe lily
Thelymitra pauciflora Native parsnip
Thomasia foliosa Native parsnip
Thysanotus arenarius Winged stackhousia
Thysanotus patersonii Winged stackhousia
Thysanotus tenellus Winged stackhousia
Trachymene pilosa Native parsnip
Tremandra stelligera Native parsnip
Trifolium indet Native parsnip
Tripterococcus brunonis Native parsnip
Trymalium floribundum subsp. tridum Native parsnip
Trymalium lepidolium var. rosmarinifolium Native parsnip
Wahlenbergia preissii Native parsnip
Waizia citrina Native parsnip
Xanthorrhoea preissii Grasstree
Xanthosia huegelii Arum lily
Zantedeschia aethiopica Arum lily
Appendix 5.

Botanical Information and Species list for stands in Remnant AUG02822 (Griffin, 1995)

Augusta - Margaret River Shire, Rosa Brook
Survey date: 01/11/94
Location: 33° 58' 82" latitude, 115° 5' 9" longitude.

Stand: AUG02822 1
Structure (Muir 1977): open woodland/low woodland b/dwarf scrub d/open low sedges
Major spp.: Dasypogon hookeri, Corymbia calophylla, Agonis flexuosa
Landform: upland plain, slope - 0°
Soil: grey sand/latentic gravel
Drainage: good
Percentage canopy cover: 20% bare ground, 45% litter cover; 3% weeds
Condition (M.E. Trudgen in Griffin, 1994): Good; long unburnt.

Stand: AUG02822 2
Structure (Muir 1977): woodland/open low woodland a/low woodland b/dwarf scrub c
Major spp.: Corymbia calophylla, Agonis flexuosa, Eucalyptus marginata ssp. marginata
Landform: upper slope, slope - 2°
Soil: grey sand/brown sand
Drainage: good.
Percentage canopy cover: 15% bare ground 90% litter cover; 2% weeds
Condition (M.E. Trudgen in Griffin, 1994): Good, long unburnt.

Stand: AUG02822 3
Structure (Muir 1977): woodland/low woodland a/open scrub/low scrub b/low heath d/very open low sedges
Major spp.: Agonis parviceps, Eucalyptus marginata ssp. marginata, Hibbertia hypericoides
Landform: upland plain, slope - 0°
Soil: lateritic brown sandy gravel
Drainage: good
Percentage canopy cover: 10% bare ground, 80% litter cover 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.

Stand: AUG02822 4
Structure (Muir 1977): woodland/low forest a/open low scrub b/dwarf scrub c/low heath D
Major spp.: Corymbia calophylla, Hibbertia hypericoides, Eucalyptus marginata ssp. Marginata
Landform: upland plain, slope - 1°
Soil: lateritic grey sandy gravel
Drainage: good
Percentage canopy cover: 10% bare ground, 80% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.
Stand: AUG02822 5
Structure (Muir 1977): woodland/low forest a/low scrub b/low heath d/very open low sedges
Major spp.: Corymbia calophylla, Hibbertia hypericoides, Eucalyptus marginata ssp. marginata
Landform: mid slope, slope - 4°
Soil: lateritic brown loamy sandy gravel
Drainage: good.
Percentage canopy cover: 10% bare ground, 80% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good; long unburnt.

Stand: AUG02822 6
Structure (Muir 1977): open woodland/low woodland a/low scrub b/open low sedges
Major spp.: Corymbia calophylla, Agonis flexuosa, Eucalyptus marginata ssp. marginata
Landform: lower slope, slope - 2°
Soil: grey sand/pale yellow loamy sand
Drainage: good,
Percentage canopy cover: 15% bare ground, 80% litter cover, 2% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, recently burnt.

Stand: AUG02822 7
Structure (Muir 1977): woodland/low forest a/low heath d/very open low sedges
Major spp.: Eucalyptus marginata ssp. marginata, Hibbertia hypericoides, Corymbia calophylla
Landform: upper slope, slope - 1°
Soil: lateritic brown sandy gravel
Drainage: good,
Percentage canopy cover: 10% bare ground, 80% litter cover, 1% weeds
Condition (M.E. Trudgen in Griffin, 1994): Very good recently burnt.

Stand: AUG02822 8
Structure (Muir 1977): low scrub a/tall sedges
Major spp.: Agonis linearifolia, Sporodanthes rivularis, Xyris flexifolia
Landform: vale (upper drainage line), slope - 1°
Soil: organic dark grey sand
Drainage: poor, winter wet
Percentage canopy cover: 5% bare ground, 20% litter cover 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.

Species List

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia browniana var. obscura</td>
<td>Narrow-leaved myrtle wattle</td>
</tr>
<tr>
<td>Acacia divergens</td>
<td>Prickly Moses</td>
</tr>
<tr>
<td>Acacia myrtifolia</td>
<td></td>
</tr>
<tr>
<td>Acacia pulchella var. pulchella</td>
<td>Peppermint tree</td>
</tr>
<tr>
<td>Adenanthos barbigere subsp. intermedius</td>
<td>Swamp peppermint</td>
</tr>
<tr>
<td>Agonis flexuosa</td>
<td></td>
</tr>
<tr>
<td>Agonis linearifolia</td>
<td>Blue grass lily</td>
</tr>
<tr>
<td>Agonis parviceps</td>
<td>Silvery hairgrass</td>
</tr>
<tr>
<td>Agrastocrinum scabrum</td>
<td>Tall kangaroo paw</td>
</tr>
<tr>
<td>Aira caryophyllea</td>
<td></td>
</tr>
<tr>
<td>Amphipogon debilis</td>
<td>Bull banksia</td>
</tr>
<tr>
<td>Anigozanthus flavidus</td>
<td></td>
</tr>
<tr>
<td>Astartea fascicularis</td>
<td></td>
</tr>
<tr>
<td>Banksia grandis</td>
<td></td>
</tr>
<tr>
<td>Baumea preissii</td>
<td></td>
</tr>
</tbody>
</table>
Billardiera drummondiana
Boronia gracilipes
Bossiaea linophylla
Bossiaea ornata
Briza maxima
Briza minor
Burchardia umbellata
Caesia parviflora
Caladenia flava subsp. sylvestris
Caladenia flava
Caladenia longicauda
Cassytha glabella
Centrolepis aristata
Centrolepis sp aff fascicularis
Chorisema diversifolium
Chorisema indet
Clematis pubescens
Comesperma confertum
Conostylis aculeata subsp. aculeata
Conostylis aculeata
Craspedia variabilis
Cyperaceae genus nova EAG 9992
Dampiera hederacea
Dampiera linearis
Dasypogon hookeri
Daucus glochidiatus
Dichondra repens
Diuris longifolia
Drosera pallida
Drosera stolonifera subsp. stolonifera
Eriostemon spicatus
Corymbia calophylla
Eucalyptus marginata
Gymnoschoenus aniceps
Haemodorus laxum
Hakea amplexicaulis
Hakea lissocarpa
Hakea russifolia
Hardenbergia comptoniana
Hibbertia amplexicaulis
Hibbertia cuneiformis
Hibbertia grossulariifolia
Hibbertia hypericoides
Hovea chorizemifolia
Hovea elliptica
Hypochaeris glabra
Hypolaena esula
Isotoma hypocrateriformis
Johnsonia lupulina
Lagenifera huiegelli
Lepidosperma angustatum
Lepidosperma lepiophyllum
Lepidosperma tetraquetrum
Leucopogon capitellatus
Leucopogon propinquus
Leucopogon racemulosus
Leucopogon verticillatus
Levenhookia pusilla

Karri boronia
Broad leaved brown pea
Blowfly grass
Shivery grass
Milkmaids
Pale grass lily
Cowslip orchid
Common white spider orchid
Tangle dodder laurel
Pointed centrolopis
Common clematis
Karri dampiera
Narrow-leaved dampiera
Pineapple bush
Australian carrot
Kidney weed
Common donkey orchid
Pale rainbow
Leafy sundew
Pepper and salt
Marri
Jarrah
Prickly hakea
Honey bush
Candle hakea
Native wisteria
Yellow buttercups
Holly-leaved hovea
Tree hovea
Smooth catsear
Woodbridge poison
Hooded lily
Coarse lagenifera
Tassel flower
Midget stylewort
Logania indet
Logania serpyllifolia subsp. serpyllifolia
Logania vaginalis
Lomandra hermaphrodita
Lomandra purpurea
Lomandra sericea
Loxocarya fasciculata
Macrozamia riedlei
Mesomelaena tetragona
Microlaena stipoides
Millotia tenuifolia
Mirbelia dilatata
Opercularia apiciflora
Opercularia hispida
Oxalis corniculata
Oxalobium lineare
Patersonia umbrosa
Pentapeltis peltigera
Persoonia longifolia
Petrophile diversifolia
Phlebocarya ciliata
Pimelea indet
Pimelea rosea
Playsace temuissima
Podocarpus drupynianus
Poranthera huegelli
Prasophyllum indet
Pteridium esculentum
Pterostylis nana
Pterostylis vittata
Pultenaea drummondii
Ranunculus colonorum
Scaevola striata
Senecio hispidulus
Sphaerolobium medium
Sphaerolobium racemulosum
Sporadanthus rivularis
Stipa indet
Stylium amoenum
Stylium calcaratum
Stylium scandens
Tetaria octandra
Tettrarhena laevis
Thelymitra crinita
Thelymitra sp EAG 9588 aff. holmsii
Thysanotus multiflorus
Thysanotus patersonii
Thysanotus tenellus
Treandra indet
Treandra stelligera
Trichocline spathulata
Tricoryne humilis
Trifoliium indet
Velleia trinervis
Xanthorrhoea gracilis
Xanthorrhoea preissii
Xanthosia candida
Xanthosia huegelli

White spray
Purple mat rush
Silky mat rush
Zamia
Semaphore sedge
Weeping grass
Soft millotia
Holly-leaved mirbelia
Hispid stinkweed
Yellow wood sorrel
Narrow-leaved oxalobium
Yellow flags
Snottygobble
Rose banjine
Wild plum
Bracken
Snail orchid
Banded greenhood
Common buttercup
Royal robe
Hispid fireweed
Lovely triggerplant
Book triggerplant
Climbing triggerplant
Forgest ricegrass
Blue lady orchid
Many flowered fringe lily
Twining fringe lily
Native gerbera
Slender grasstree
Grasstree
Appendix 6.

Botanical Information and Species list for stands in Remnant AUG02873 (Griffin, 1995)

Augusta - Margaret River Shire, Witchcliffe, West,
Survey date: 31/10/94
Location: 34° 2' 23"latitude, 115° 5' 2" longitude

Stand: AUG02873 1
Structure (Muir 1977): forest/open low woodland b/open low scrub a/dwarf scrub d/open low sedges
Major spp.: Eucalyptus marginata ssp. marginata, Corymbia calophylla, Podocarpus drouynianus
Landform: upland plain, slope - 1°
Soil: grey sand/lateritic orange loamy gravel
Drainage: good.
Percentage canopy cover: 15% bare ground, 90% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.

Stand: AUG02873 2
Structure (Muir 1977): low woodland a/open low woodland b/low scrub a/dwarf scrub c/tall sedges
Major spp.: Agonis flexuosa, Oxylobium lineare, Lepidosperma tetraquetrum
Landform: vale (upper drainage line), slope - 0°
Soil: grey sand
Drainage: poor, winter wet,
Percentage canopy cover: 5% bare ground, 40% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.

Stand: AUG02873 3
Structure (Muir 1977): forest/low woodland a/low scrub a/dwarf scrub c/low heath d/open low sedges
Major spp.: Eucalyptus marginata ssp. marginata, Corymbia calophylla, Hibbertia hypericoides
Landform: upper slope, slope - 2°
Soil: brown loamy sand/lateritic orange-brown gravelly sandy loam
Drainage: good.
Percentage canopy cover: 15% bare ground, 70% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.

Stand: AUG02873 4
Structure (Muir 1977): open woodland/open low woodland a/scrub/low scrub a/dwarf scrub c/open tall sedges
Major spp.: Oxylobium lineare, Corymbia calophylla, Eucalyptus diversicolor
Landform: vale (upper drainage line), slope - 0°
Soil: dark brown sandy loam/clay
Drainage: poor, winter damp.
Percentage canopy cover: 15% bare ground, 65% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.
Stand: AUG02873 5
Structure (Muir 1977): forest/open low woodland a/open scrub/low scrub a/dwarf scrub d
Major spp.: *Eucalyptus diversicolor*, *Bossiaea linophylla*, *Hibbertia hypericoides*
Landform: lower slope, slope - 2°
Soil: brown gravelly sandy loam/loamy gravel/granite
Drainage: good
Percentage canopy cover: 15% bare ground, 90% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.

Stand: AUG02873 6
Structure (Muir 1977): forest/low woodland a/low scrub b/low heath d
Major spp.: *Eucalyptus marginata* ssp. *marginata*, *Corymbia calophylla*, *Hibbertia hypericoides*
Landform: plain, slope - 1°
Soil: dark brown loamy sand/lateritic brown gravelly loamy sand
Drainage: good
Percentage canopy cover: 10% bare ground, 90% litter cover, 2% weeds
Condition (M.E. Trudgen in Griffin, 1994): very good, long unburnt.

Species List

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia divergens</td>
<td>Narrow-leaved myrtle wattle</td>
</tr>
<tr>
<td>Acacia myrtifolia</td>
<td>Prickly Moses</td>
</tr>
<tr>
<td>Acacia pulchella var. pulchella</td>
<td></td>
</tr>
<tr>
<td>Acacia tayloriana</td>
<td></td>
</tr>
<tr>
<td>Agonis flexuosa</td>
<td>Peppermint tree</td>
</tr>
<tr>
<td>Agonis linearifolia</td>
<td>Swamp peppermint</td>
</tr>
<tr>
<td>Agonis parviceps</td>
<td></td>
</tr>
<tr>
<td>Agrostoscinum scabrum</td>
<td>Blue grass lily</td>
</tr>
<tr>
<td>Amperea ericooides</td>
<td></td>
</tr>
<tr>
<td>Amphipogon debilis</td>
<td></td>
</tr>
<tr>
<td>Anigozanthos indet</td>
<td></td>
</tr>
<tr>
<td>Anthoxanthum odoratum</td>
<td>Sweet vernal grass</td>
</tr>
<tr>
<td>Asplenium trichomanes</td>
<td>Maidenhair spleenwort</td>
</tr>
<tr>
<td>Astraea fascicularis</td>
<td></td>
</tr>
<tr>
<td>Banksia grandis</td>
<td>Bull banksia</td>
</tr>
<tr>
<td>Baumea preissii</td>
<td></td>
</tr>
<tr>
<td>Boronia cremulata</td>
<td></td>
</tr>
<tr>
<td>Bossiaea linophylla</td>
<td></td>
</tr>
<tr>
<td>Briza maxima</td>
<td>Blowfly grass</td>
</tr>
<tr>
<td>Briza minor</td>
<td>Shivery grass</td>
</tr>
<tr>
<td>Caesia micrantha</td>
<td>Pale grass-lily</td>
</tr>
<tr>
<td>Caesia parviflora</td>
<td>Pale grass lily</td>
</tr>
<tr>
<td>Caladenia flavula subsp. sylvestris</td>
<td></td>
</tr>
<tr>
<td>Caladenia flavula</td>
<td>Cowslip orchid</td>
</tr>
<tr>
<td>Caladenia infundibularis</td>
<td>Tangled dodder laurel</td>
</tr>
<tr>
<td>Cassytha glabella</td>
<td>Chorilaena</td>
</tr>
<tr>
<td>Chorilaena quercifolia</td>
<td>Heron bristle rush</td>
</tr>
<tr>
<td>Chorizandra cymbaria</td>
<td></td>
</tr>
<tr>
<td>Chorizema diversifolium</td>
<td>Holly flame pea</td>
</tr>
<tr>
<td>Chorizema ilicifolium</td>
<td></td>
</tr>
<tr>
<td>Chorizema nanum</td>
<td>Common clematis</td>
</tr>
<tr>
<td>Clematis pubescens</td>
<td></td>
</tr>
<tr>
<td>Comesperma ciliatum</td>
<td></td>
</tr>
<tr>
<td>Conostylis aculeata subsp. aculeata</td>
<td></td>
</tr>
<tr>
<td>Craspedia indet</td>
<td></td>
</tr>
</tbody>
</table>
Dampiera hederacea Karri dampiera
Danthonia caespitosa Common wallaby grass
Elytranthera brunonis Purple enamel orchid
Eriochilus dilatatus subsp. multiflorus White bunny orchid
Corymbia calophylla Marri
Eucalyptus diversicolor Karri
Eucalyptus marginata Jarrah
Hakea amplexicaulis Prickly hakea
Hakea lissocarpha Honey bush
Hardenbergia comptoniana Native wisteria
Hibbertia amplexicaulis Cuthibbertia
Hibbertia commutata Yellow buttercups
Hibbertia hypericoides Holly-leaved hovea
Hovea chorisemifolia Tree hovea
Hovea elliptica Smooth catsear
Hovea indet Coneflower
Hypocharis glabra Coarse lagenifera
Isopogon cuneatus Tassel flower
Lagenifera huegeli Zamia
Lepidosperma angustatum Weeping grass
Lepidosperma indet Holly-leaved mirbelia
Lepidosperma leptophyllum Hispid stinkweed
Lepidosperma tetracotenum Narrow-leaved oxylabium
Leucopogon capellatus Purple flag
Leucopogon propinquus Yellow flags
Leucopogon verticillatus Snottygobble
Logania serpyllifolia subsp. serpyllifolia Rose banjine
Macrozamia riedlei Wild plum
Microlaena stipoides Bracken
Mirbelia dilatata Bird orchid
Opeculiaria apiciflora Wedding bush
Opeculiaria hispidula Royal robe
Oxylabium lineare Australian bluebell
Patersonia occidentalis Common beaked triggerplant
Patersonia umbrosa Lovely triggerplant
Persoonia longifolia Book triggerplant
Pimelea rosea Reed triggerplant
Platysace tenuissima Needle-leaved triggerplant
Poaceae indet Hair sedge
Podocarpus drouynianus Blue lady orchid
Pteridium esculentum Common beaked triggerplant
Pterostylis turfosa Lovely triggerplant
Ricinocarpus glaucus var. glaucus Book triggerplant
Scactyola striata Reed triggerplant
Sollya heterophylla Needle-leaved triggerplant
Stackhousia monogynia Hair sedge
Styliodium adnatum var. propinquum Blue lady orchid
Styliodium amoenum Common beaked triggerplant
Styliodium calcareatum Lovely triggerplant
Styliodium junceum Book triggerplant
Styliodium leptophyllum Reed triggerplant
Tetrairia octandra Needle-leaved triggerplant
Tetrarrhena laevis Hair sedge
Thelymitra crinita Blue lady orchid
Thomasia triloba Common beaked triggerplant
Thysanotus indet Needle-leaved triggerplant
Thysanotus tenellus Needle-leaved triggerplant
Trachymene pilosa
Tremandra indet
Tremandra stelligera
Tripterococcus brunonis
Trymalium floribundum subsp. trifidum
Velleia trinervis
Waitzia citrina
Xanthorrhoea preissii
Xanthosia candida
Xanthosia huegelii

Native parsnip
Winged stackhousia
Grasstree
Appendix 7.

Botanical Information and Species list for stands in Remnant AUG03125 (Griffin, 1995)

Margaret River Shire, Alexander Bridge, south-east

Survey date: 31/10/94

Stand: AUG03125 1
Structure (Muir 1977): forest/low woodland a/low heath
Major spp.: Eucalyptus marginata ssp. marginata, Corymbia calophylla, Hibbertia hypericoides
Landform: upland plain, slope - 1°
Soil: lateritic grey sandy gravel
Drainage: good.
Percentage canopy cover: 15% bare ground, 85% litter cover 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): good.

Stand: AUG03125 2
Structure (Muir 1977): woodland/low forest a/low heath
Major spp.: Eucalyptus marginata ssp. marginata, Corymbia calophylla, Hibbertia hypericoides
Landform: rise, slope - 1°
Soil: grey sand
Drainage: good
Percentage canopy cover: 10% bare ground, 70% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): good, long unburnt.

Stand: AUG03125 3
Structure (Muir 1977): low scrub a/low heath d/dense tall sedges
Major spp.: Agonis linearifolia, Gahnia sp. indet., Schoenus cruentus
Landform: open depression, slope - 0°
Soil: organic dark grey sand
Drainage: poor, winter wet
Percentage canopy cover: 5% bare ground, 10% litter cover, 0% weeds
Condition (M.E. Trudgen in Griffin, 1994): good, long unburnt.

Species List

Botanical Name	Common Name (if known)
Acacia divergens | Wongan wattle
Acacia pulchella var. |
Acacia semitrullata |
Adenantheros meisneri |
Agonis flexuosa | Peppermint tree
Agonis linearifolia | Swamp peppermint
Agonis parviceps |
Agrostochronium scabrum | Blue grass lily
Aira caryophyllaea | Silvery hairgrass
Allocasuarina fraseriana | Common sheoak
Anarthria prolifera |
Andersonia caerulea | Foxtails
Asplenium trichomanes | Maidenhair spleenwort
Asteratea fascicularis |
Banksia grandis | Bull banksia
<table>
<thead>
<tr>
<th>Latin Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baumea vaginalis</td>
<td>Sheath twigrush</td>
</tr>
<tr>
<td>Boronia fastigiata</td>
<td>Bushy boronia</td>
</tr>
<tr>
<td>Bossiaea linophylla</td>
<td>Common white spider orchid</td>
</tr>
<tr>
<td>Caladenia flava subsp. sylvestris</td>
<td>Tangled dodder laurel</td>
</tr>
<tr>
<td>Caladenia indet</td>
<td>Blue quill</td>
</tr>
<tr>
<td>Caladenia longicauda</td>
<td>Milkwort</td>
</tr>
<tr>
<td>Cassytha glabella</td>
<td>Prickly conostylis</td>
</tr>
<tr>
<td>Cassytha racemosa forma pilosa</td>
<td>Bristly cottonhead</td>
</tr>
<tr>
<td>Chamaecilla corymbosa</td>
<td>Common dampiera</td>
</tr>
<tr>
<td>Comesperma virgatum</td>
<td>Pineapple bush</td>
</tr>
<tr>
<td>Conostylis aculeata subsp. aculeata</td>
<td>Thread-leaved diaspasis</td>
</tr>
<tr>
<td>Conostylis setigera subsp. setigera</td>
<td>Pale rainbow</td>
</tr>
<tr>
<td>Cyathochaeta avenacea</td>
<td>Purple enamel orchid</td>
</tr>
<tr>
<td>Dampiera linearis</td>
<td>Pepper and salt</td>
</tr>
<tr>
<td>Dasyypogon bromeliiifolius</td>
<td>Marri</td>
</tr>
<tr>
<td>Diaspasia filifolia</td>
<td>Jarrah</td>
</tr>
<tr>
<td>Drosera palida</td>
<td></td>
</tr>
<tr>
<td>Elythranihera brunonis</td>
<td></td>
</tr>
<tr>
<td>Empodisma gracililimum</td>
<td></td>
</tr>
<tr>
<td>Eriostemon spicatus</td>
<td></td>
</tr>
<tr>
<td>Corymbia calophylla</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus marginata</td>
<td></td>
</tr>
<tr>
<td>Eutaxia virgata</td>
<td></td>
</tr>
<tr>
<td>Gompholobium polymorphum</td>
<td></td>
</tr>
<tr>
<td>Gompholobium preissii</td>
<td></td>
</tr>
<tr>
<td>Hakea lissocarpa</td>
<td>Honey bush</td>
</tr>
<tr>
<td>Hakea ruscifolia</td>
<td>Candle hakea</td>
</tr>
<tr>
<td>Hibbertia amplexicaulis</td>
<td>Yellow buttercups</td>
</tr>
<tr>
<td>Hibbertia hypericoides</td>
<td>Orange stars</td>
</tr>
<tr>
<td>Hibbertia stellaris</td>
<td>Tree hovea</td>
</tr>
<tr>
<td>Hovea elliptica</td>
<td>Common hovea</td>
</tr>
<tr>
<td>Hovea trisperma</td>
<td>Hooded lily</td>
</tr>
<tr>
<td>Hypolaena exsulca</td>
<td></td>
</tr>
<tr>
<td>Johnsonia lupulina</td>
<td></td>
</tr>
<tr>
<td>Lepidosperma leptoaphyllum</td>
<td></td>
</tr>
<tr>
<td>Leucopogon capitellatus</td>
<td></td>
</tr>
<tr>
<td>Leucopogon propinquus</td>
<td></td>
</tr>
<tr>
<td>Leucopogon racemulosus</td>
<td></td>
</tr>
<tr>
<td>Lomandra purpurea</td>
<td></td>
</tr>
<tr>
<td>Lobocarya cinerea</td>
<td></td>
</tr>
<tr>
<td>Lobocarya fasciculata</td>
<td></td>
</tr>
<tr>
<td>Macrozamia riedlei</td>
<td></td>
</tr>
<tr>
<td>Mesomelaena tetragona</td>
<td></td>
</tr>
<tr>
<td>Nyitusia floribunda</td>
<td></td>
</tr>
<tr>
<td>Opercularia apiciflora</td>
<td></td>
</tr>
<tr>
<td>Opercularia echinocephala</td>
<td></td>
</tr>
<tr>
<td>Oxyllobium lineare</td>
<td></td>
</tr>
<tr>
<td>Patersonia indet</td>
<td></td>
</tr>
<tr>
<td>Patersonia occidentalis</td>
<td></td>
</tr>
<tr>
<td>Pericalymma spongiocaule</td>
<td></td>
</tr>
<tr>
<td>Persoonia longifolia</td>
<td></td>
</tr>
<tr>
<td>Platsasce tenuissima</td>
<td></td>
</tr>
<tr>
<td>Podocarpus drouymianus</td>
<td></td>
</tr>
<tr>
<td>Scaevola striata</td>
<td></td>
</tr>
<tr>
<td>Schoenus cruentus</td>
<td></td>
</tr>
<tr>
<td>Sphenotoma gracile</td>
<td></td>
</tr>
<tr>
<td>Stylidium amoenum</td>
<td></td>
</tr>
<tr>
<td>Stylidium calcaratum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin Name</td>
<td>English Name</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Tetraria octandra</td>
<td>Blue lady orchid</td>
</tr>
<tr>
<td>Thelymitra crinita</td>
<td>Slender sun orchid</td>
</tr>
<tr>
<td>Thelymitra pauciflora</td>
<td>Winged stackhousia</td>
</tr>
<tr>
<td>Tricoryne humilis</td>
<td>Grasstree</td>
</tr>
<tr>
<td>Tripteroscoccus brunonis</td>
<td></td>
</tr>
<tr>
<td>Villarsia lasiosperma</td>
<td></td>
</tr>
<tr>
<td>Xanthorrhoea preissii</td>
<td></td>
</tr>
<tr>
<td>Xanthostis candida</td>
<td></td>
</tr>
<tr>
<td>Xanthostis huegelii</td>
<td></td>
</tr>
<tr>
<td>Xylometum occidentale</td>
<td></td>
</tr>
<tr>
<td>Xyris indet</td>
<td>Woody pear</td>
</tr>
</tbody>
</table>
Appendix 8.

Native Mammals of the Katanning CALM District (Sanders and Harold, 1991)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Common Name</th>
<th>Conservation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachyglossus aculeatus</td>
<td>Echidna</td>
<td>G1, AR</td>
</tr>
<tr>
<td>Dasyurus geoffroii</td>
<td>Chudditch</td>
<td>G1, AR, RP</td>
</tr>
<tr>
<td>Phascogale calura</td>
<td>Red-tailed Phascogale</td>
<td>G1, AR, RP</td>
</tr>
<tr>
<td>Phascogale tapoatafa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antechinus flaviceps</td>
<td>Mardo</td>
<td>NR</td>
</tr>
<tr>
<td>Smynthopsis gilberti</td>
<td>Common Dunnart</td>
<td></td>
</tr>
<tr>
<td>Smynthopsis griseoventer</td>
<td>Common Dunnart</td>
<td>PO, NR</td>
</tr>
<tr>
<td>Smynthopsis crassicaudata</td>
<td>Fat-tailed Dunnart</td>
<td></td>
</tr>
<tr>
<td>Smynthopsis granulipes</td>
<td>White-tailed Dunnart</td>
<td></td>
</tr>
<tr>
<td>Antichinomys laniger</td>
<td>Kultarr</td>
<td>NR</td>
</tr>
<tr>
<td>Myrmecobius fasciatus</td>
<td>Numbat</td>
<td>G1, AR, ER, G1</td>
</tr>
<tr>
<td>Isoodon obsesus fasciicenter</td>
<td>Brown Bandicoot</td>
<td>G1, AR, ER, G1</td>
</tr>
<tr>
<td>Perameles bougainville</td>
<td>Barred Bandicoot</td>
<td>ER, G1</td>
</tr>
<tr>
<td>Macroits lagotis</td>
<td>Biby</td>
<td>ER, G1</td>
</tr>
<tr>
<td>Pseudochirus perigrinus occidentalis</td>
<td>Common Ringtail</td>
<td>G1, AR, NR</td>
</tr>
<tr>
<td>Trichosurus vulpecula</td>
<td>Brush-tailed Possum</td>
<td></td>
</tr>
<tr>
<td>Cercarctetus concinnus</td>
<td>South-west Pygmy Possum</td>
<td></td>
</tr>
<tr>
<td>Thersites rostratus</td>
<td>Honey Possum</td>
<td></td>
</tr>
<tr>
<td>Bettongia penicillata</td>
<td>Woylie</td>
<td>G1, AR</td>
</tr>
<tr>
<td>Bettongia lesueur</td>
<td>Burrowing Rat-kangaroo</td>
<td>ER, G1</td>
</tr>
<tr>
<td>Onychogalea lunata</td>
<td>Crescent nail-tailed wallaby</td>
<td>ER, G1</td>
</tr>
<tr>
<td>Macropus eugenii</td>
<td>Tammar Wallaby</td>
<td>G1, AR</td>
</tr>
<tr>
<td>Macropus irma</td>
<td>Western Brush Wallaby</td>
<td></td>
</tr>
<tr>
<td>Macropus fuliginosus</td>
<td>Western Grey Kangaroo</td>
<td></td>
</tr>
<tr>
<td>Tadarida australis</td>
<td>White-striped Bat</td>
<td></td>
</tr>
<tr>
<td>Mormopterus planiceps</td>
<td>Little Mastiff-Bat</td>
<td>NR</td>
</tr>
<tr>
<td>Nyctophilus major</td>
<td>Greater Long-eared Bat</td>
<td></td>
</tr>
<tr>
<td>Nyctophilus gouldi</td>
<td>Gould's Long-eared Bat</td>
<td>NR</td>
</tr>
<tr>
<td>Nyctophilus geoffroyi</td>
<td>Lesser Long-eared Bat</td>
<td></td>
</tr>
<tr>
<td>Chalinolagus morio</td>
<td>Chocolate Bat</td>
<td></td>
</tr>
<tr>
<td>Scotorepens balstoni</td>
<td>Western Broad-nosed Bat</td>
<td>NR</td>
</tr>
<tr>
<td>Falsistrellus mackenziei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epitesicus finlaysoni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydromys chrysogaster</td>
<td>Water Rat</td>
<td></td>
</tr>
<tr>
<td>Pseudomys shorridgei</td>
<td>Blunt-faced Mouse</td>
<td>G1, AR</td>
</tr>
<tr>
<td>Pseudomys albocinereus</td>
<td>Ash-greyMouse</td>
<td></td>
</tr>
<tr>
<td>Pseudomys occidentalis</td>
<td>Western Mouse</td>
<td>G1, AR, RP</td>
</tr>
<tr>
<td>Notomys mitchelli</td>
<td>Mitchell's Hopping Mouse</td>
<td></td>
</tr>
<tr>
<td>Notomys alexis</td>
<td>Brown Hopping-Mouse</td>
<td></td>
</tr>
<tr>
<td>Canis familiaris</td>
<td>Dingo</td>
<td></td>
</tr>
</tbody>
</table>

Status Key

AR - At risk within the region
ER - Extinct within the region
G1 - Gazetted as Schedule 1 under Wildlife Conservation Act 1950
NR - Not recorded in the region since 1980
PO - Possibly occurring in the region but not yet recorded
RP - Have population mainly within the region
Appendix 9.

Reptiles and Amphibians of the Katanning CALM District (Sanders and Harold, 1991)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Conservation Status</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptodactylidae (Frogs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crinia georgiana</td>
<td>NK;AR</td>
<td></td>
</tr>
<tr>
<td>Crinia pseudinsignifera</td>
<td>NK;AR</td>
<td></td>
</tr>
<tr>
<td>Helioporus albopunctatus</td>
<td>AR</td>
<td></td>
</tr>
<tr>
<td>Helioporus eyrei</td>
<td>AR</td>
<td>Moaning frog</td>
</tr>
<tr>
<td>Helioporus inornatus</td>
<td>AR</td>
<td></td>
</tr>
<tr>
<td>Helioporus psammophilus</td>
<td>NR;AR</td>
<td></td>
</tr>
<tr>
<td>Limnodynastes dorsalis</td>
<td>AR</td>
<td>Western banjo frog</td>
</tr>
<tr>
<td>Myobatrachus Gouldii</td>
<td>AR</td>
<td>Turtle frog</td>
</tr>
<tr>
<td>Neobatrachus albipes</td>
<td>RF;AR</td>
<td></td>
</tr>
<tr>
<td>Neobatrachus kunapalari</td>
<td>AR</td>
<td></td>
</tr>
<tr>
<td>Neobatrachus pelobatoides</td>
<td>AR</td>
<td>Humming frog</td>
</tr>
<tr>
<td>Neobatrachus sutor</td>
<td>NR;AR</td>
<td>Shoemaker frog</td>
</tr>
<tr>
<td>Pseudophryne guentheri</td>
<td>AR</td>
<td>Guenther's toadlet</td>
</tr>
<tr>
<td>Pseudophryne occidentalis</td>
<td>NK;AR</td>
<td>Orange-crowned toadlet</td>
</tr>
<tr>
<td>Hylidae (Tree Frogs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litoria adelaidensis</td>
<td>AR</td>
<td>Slender tree frog</td>
</tr>
<tr>
<td>Litoria cyclorhyncha</td>
<td>AR</td>
<td>Spotted thighbad frog</td>
</tr>
<tr>
<td>Litoria moorei</td>
<td>AR</td>
<td>Western green frog</td>
</tr>
<tr>
<td>Chelidae (Turtles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chelodina oblonga</td>
<td></td>
<td>Oblong turtle</td>
</tr>
<tr>
<td>Gekkonidae (Geckos)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenadactylus ocellatus</td>
<td></td>
<td>Clawless gecko</td>
</tr>
<tr>
<td>Diplodactylus granariensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplodactylus polyophthalmus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplodactylus pulcher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplopatryx spinigerus inornatus</td>
<td></td>
<td>Western spiny-tailed gecko</td>
</tr>
<tr>
<td>Gehyra variegata</td>
<td></td>
<td>Tree dtella</td>
</tr>
<tr>
<td>Oedura reticulata</td>
<td></td>
<td>Reticulated velvet gecko</td>
</tr>
<tr>
<td>Phylodactylus marmoratus marmoratus</td>
<td></td>
<td>Marbled gecko</td>
</tr>
<tr>
<td>Underwoodisaurus mili</td>
<td></td>
<td>Thick-tailed gecko</td>
</tr>
<tr>
<td>Pygopodidae (Snake Lizards)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprasia pulchella</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprasia repens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delma australis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delma fraseri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delma greyii</td>
<td>NR</td>
<td>Burton's snake lizard</td>
</tr>
<tr>
<td>Lialis burtonis</td>
<td></td>
<td>Common scaly-foot</td>
</tr>
<tr>
<td>Pygopus lepidopodus lepidopodus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agamidae (Lizards)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenophorus cristatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenophorus maculatus griseus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenophorus ornatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenophorus salinarum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moloch horridus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pogona minor minor</td>
<td></td>
<td>Thorny devil</td>
</tr>
<tr>
<td>Animal Species</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Tymanocryptis adelaidensis</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Scincidae (Skinks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassiana trilineata</td>
<td>NK</td>
<td></td>
</tr>
<tr>
<td>Cryptoblepharus plagioccephalus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenotus catenifer</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Ctenotus gemmula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenus impar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenus labillardieri</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Ctenus schomburgkii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egernia kingii</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Egernia multiscutata bos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egernia napoleonis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egernia richardi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiergis peronii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lerista microtis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menetia greyii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morethia butleri</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Morethia lineocellata</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Morethia obscura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiliqua occipitalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiliqua rugosa rugosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanidae (Goannas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanus gouldii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanus tristis tristis</td>
<td>NK</td>
<td></td>
</tr>
<tr>
<td>Varanus rosenburgi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlopidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramphotyphlops australis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramphotyphlops pinguis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramphotyphlops waitii</td>
<td>NK</td>
<td></td>
</tr>
<tr>
<td>Boidae (Pythons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morelia spilota imbricata</td>
<td>G2;AR</td>
<td></td>
</tr>
<tr>
<td>Morelia stimsoni stimsoni</td>
<td>PO(K);NK</td>
<td></td>
</tr>
<tr>
<td>Elapidae (Viper Snakes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthophis antarcticus</td>
<td>PO(K);NK</td>
<td></td>
</tr>
<tr>
<td>Notechis coronatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notechis curtus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notechis scutatus occidentalis</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Pseudonaja australis</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Pseudonaja affinis affinis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudonaja modesta</td>
<td>NK</td>
<td></td>
</tr>
<tr>
<td>Pseudonaja nachalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinopecephalus bicolor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinopecephalus gouldii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinopecephalus nigriceps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicella bertholdi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermicella bimaculata</td>
<td>PO(K);NK</td>
<td></td>
</tr>
<tr>
<td>Vermicella semifasciata semifasciata</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Key

AR - At risk within the region
G2 - Gazetted as Schedule 2 under Wildlife Conservation Act 1950
NR - Not recorded in the region since 1980
PO - Possibly occurring in the region but not yet recorded (district shown in brackets)
NK - Date of last record not known
RP - Have population mainly within region

49
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emu</td>
<td>Dromaius novaehollandiae</td>
</tr>
<tr>
<td>Great crested grebe</td>
<td>Podiceps cristatus</td>
</tr>
<tr>
<td>Australasian grebe</td>
<td>Podiceps novaehollandiae</td>
</tr>
<tr>
<td>Hoary-headed grebe</td>
<td>Podiceps poliocephalus</td>
</tr>
<tr>
<td>Little pied cormorant</td>
<td>Phalacrocorax melanoleucus</td>
</tr>
<tr>
<td>Pelican</td>
<td>Pelecanus conspicillatus</td>
</tr>
<tr>
<td>Little black cormorant</td>
<td>Phalacrocorax sulcirostris</td>
</tr>
<tr>
<td>Black cormorant</td>
<td>Phalacrocorax carbo</td>
</tr>
<tr>
<td>White-faced heron</td>
<td>Ardea novaehollandiae</td>
</tr>
<tr>
<td>Straw-necked ibis</td>
<td>Threskiornis spinicollis</td>
</tr>
<tr>
<td>Yellow-billed spoonbill</td>
<td>Platalea flaviceps</td>
</tr>
<tr>
<td>Black swan</td>
<td>Cygnus atratus</td>
</tr>
<tr>
<td>Freckled duck</td>
<td>Stictonetta naevosa</td>
</tr>
<tr>
<td>Black duck</td>
<td>Anas superciliosa</td>
</tr>
<tr>
<td>Grey teal</td>
<td>Anas gibberifrons</td>
</tr>
<tr>
<td>Chestnut teal</td>
<td>Anas castanea</td>
</tr>
<tr>
<td>Pink-eared duck</td>
<td>Malacorhynchus membranaceus</td>
</tr>
<tr>
<td>Wood duck</td>
<td>Chenonetta jubata</td>
</tr>
<tr>
<td>Blue-billed duck</td>
<td>Oxystura australis</td>
</tr>
<tr>
<td>Musk duck</td>
<td>Biziura lobata</td>
</tr>
<tr>
<td>Mountain duck</td>
<td>Tadorna tadornoides</td>
</tr>
<tr>
<td>Hardhead</td>
<td>Aythya australis</td>
</tr>
<tr>
<td>Coot</td>
<td>Fulica atra</td>
</tr>
<tr>
<td>Shoveler</td>
<td>Anas rhynchotis</td>
</tr>
<tr>
<td>Black-shouldered kite</td>
<td>Elanus caeruleus</td>
</tr>
<tr>
<td>Brown goshawk</td>
<td>Accipiter fasciatus</td>
</tr>
<tr>
<td>Collared sparrowhawk</td>
<td>Accipiter cirrocephalus</td>
</tr>
<tr>
<td>Wedge-tailed eagle</td>
<td>Aquila audax</td>
</tr>
<tr>
<td>Spotted harrier</td>
<td>Circus assimilis</td>
</tr>
<tr>
<td>Swamp harrier</td>
<td>Circus aeruginosus</td>
</tr>
<tr>
<td>Brown falcon</td>
<td>Falco berigora</td>
</tr>
<tr>
<td>Nankeen kestral</td>
<td>Falco cenchroides</td>
</tr>
<tr>
<td>Cattle egret</td>
<td>Egretta ibis</td>
</tr>
<tr>
<td>Large egret</td>
<td>Egretta alba</td>
</tr>
<tr>
<td>Little eagle</td>
<td>Aquila morphnoides</td>
</tr>
<tr>
<td>Little falcon</td>
<td>Falco longipennis</td>
</tr>
<tr>
<td>Malleefowl</td>
<td>Leipoa ocellata</td>
</tr>
<tr>
<td>Stubble quail</td>
<td>Coturnix novaehollandiae</td>
</tr>
<tr>
<td>Brown quail</td>
<td>Coturnix ypsiloophora</td>
</tr>
<tr>
<td>Painted button-quail</td>
<td>Turnix varia</td>
</tr>
<tr>
<td>Little button-quail</td>
<td>Turnix velox</td>
</tr>
<tr>
<td>Black-tailed native-hen</td>
<td>Gallimula ventralis</td>
</tr>
<tr>
<td>Spotted crake</td>
<td>Porzana fluminea</td>
</tr>
<tr>
<td>Banded plover</td>
<td>Vanellus tricolor</td>
</tr>
<tr>
<td>Australian dotterell</td>
<td>Peltohys australis</td>
</tr>
<tr>
<td>Red-capped dotterell</td>
<td>Charadrius ruficapillus</td>
</tr>
<tr>
<td>Black-fronted dotterell</td>
<td>Charadrius melanops</td>
</tr>
<tr>
<td>Hooded dotterell</td>
<td>Charadrius cucullatus</td>
</tr>
<tr>
<td>Banded stilt</td>
<td>Cladorhynchus leucocephalus</td>
</tr>
<tr>
<td>Pied stilt</td>
<td>Himantopus himatopus</td>
</tr>
<tr>
<td>Red-necked avocet</td>
<td>Recurvirostra novaehollandiae</td>
</tr>
</tbody>
</table>
Common sandpiper Tringa hypoleucos
Greenshank Tringa nebularia
Marsh sandpiper Tringa stagnatilis
Wood sandpiper Tringa glareola
Sharp-tailed sandpiper Calidris acuminata
Curlow sandpiper Calidris ferruginea
Silver gull Larus novaehollandiae
Whiskered tern Sterna hirundo
Common bronzewing Phaps chalcoptera
Brush bronzewing Phaps elegans
Crested pigeon Ocyphaps lophotes
Carnaby's cockatoo Calyptorhynchus latirostris
Baudin's black cockatoo Calyptorhynchus baudinii
Galah Cacatua roseicapilla
Purple-crowned lorikeet Glossopsitta porphyrocephala
Regent parrot Polytelis anthopeplus
Budgerigar Melopsittacus undulatus
Red-capped parrot Platycercus spirius
Elegant parrot Neophema elegans
Western rosella Platycercus icterotis
Port Lincoln parrot Barnardius zonarius
Mulga parrot Psephotus varius
Pallid cuckoo Cuculus pallidus
Fan-tailed cuckoo Cuculus flabelliformis
Fork-tailed swift Apus pacificus
Horsefield's bronze cuckoo Chrysococcyx basalis
Shining bronze-cuckoo Chrysococcyx lucidus
Tawny frogmouth Podargus strigoides
Owl-nightjar Aegotheles cristatus
Spotted nightjar Eurostopodus guttatus
Laughing kookaburra Dacelo gigas
Sacred kingfisher Halycon sancta
Rainbow bee-eater Merops ornatus
Restless flycatcher Myiagra inquieta
Western flycatcher Gerygone fusca
Welcome swallow Hirundo neoxena
Tree-martin Hirundo nigriceps
Fairy martin Hirundo aerius
Richard's pipit Anthus novaeseelandiae
Black-faced cuckoo shrike Corocina novaehollandiae
White-winged triller Lalage leucomela
Southern scrub-robin Drymodes brumneopygius
Scarlet robin Petroica multicolor
Red-capped robin Petroica goodenovii
Hooded robin Petroica cucullata
Western yellow robin Eopsaltria georgiana
Jacky winter Microeca leucophaea
Golden whistler Pachycephala pectoralis
Rufous whistler Pachycephala rufiventris
Grey shrike-thrush Coliuricincla harmonica
Crested bellbird Oreopica gutturalis
Grey fantail Rhipidura fuliginosa
Willy wagtail Rhipidura leucophrys
White-browed babbler Pomatostomus superciliosus
Clamorous reed-warbler Acrecephalus stentoreus
Little grassbird Megalurus gramineus
Brown song lark Cincloramphus cruralis
Rufous song lark Cincloramphus mathewsi
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue-breasted fairy wren</td>
<td>Malurus pulcherrimus</td>
</tr>
<tr>
<td>White-browed scrubwren</td>
<td>Sericornis frontalis</td>
</tr>
<tr>
<td>Shy hylacola</td>
<td>Sericornis caudus</td>
</tr>
<tr>
<td>Weebill</td>
<td>Smicronis brevirostris</td>
</tr>
<tr>
<td>Yellow-tailed thornbill</td>
<td>Acanthiza chrysorhoa</td>
</tr>
<tr>
<td>Varied sittella</td>
<td>Daphoenositta chrysoptera</td>
</tr>
<tr>
<td>Red wattlebird</td>
<td>Anthochaera carunculata</td>
</tr>
<tr>
<td>Spiny-cheeked honeyeater</td>
<td>Acanthagenys rufogularis</td>
</tr>
<tr>
<td>Purple-gaped honeyeater</td>
<td>Meliphaga cratita</td>
</tr>
<tr>
<td>Brown-headed honeyeater</td>
<td>Helithreptus brevirostris</td>
</tr>
<tr>
<td>White-plumed honeyeater</td>
<td>Helithreptus lunatus</td>
</tr>
<tr>
<td>Brown honeyeater</td>
<td>Lichmera indistincta</td>
</tr>
<tr>
<td>Tawny-crowned honeyeater</td>
<td>Philidonyris melanops</td>
</tr>
<tr>
<td>White-cheeked honeyeater</td>
<td>Philidonyris nigra</td>
</tr>
<tr>
<td>White-eared honeyeater</td>
<td>Meliphaga leucotis</td>
</tr>
<tr>
<td>Singing honeyeater</td>
<td>Meliphaga virescens</td>
</tr>
<tr>
<td>Yellow-throated miner</td>
<td>Mannina flavigula</td>
</tr>
<tr>
<td>White-fronted chat</td>
<td>Ephthianura albifrons</td>
</tr>
<tr>
<td>Mistletoebird</td>
<td>Dicaeum hirundinaceum</td>
</tr>
<tr>
<td>Yellow-rumped pardalote</td>
<td>Pardalotus xanthopygus</td>
</tr>
<tr>
<td>Striated pardalote</td>
<td>Pardalotus striatus</td>
</tr>
<tr>
<td>White ibis</td>
<td>Threskiornis aethiopicus</td>
</tr>
<tr>
<td>Western silvereye</td>
<td>Zosterops gouldi</td>
</tr>
<tr>
<td>Australian magpie lark</td>
<td>Grallina cyanoleuca</td>
</tr>
<tr>
<td>Black-faced woodswallow</td>
<td>Artamus cinereus</td>
</tr>
<tr>
<td>Dusky woodswallow</td>
<td>Artamus cyanopterus</td>
</tr>
<tr>
<td>Grey butcherbird</td>
<td>Cracticus torquatus</td>
</tr>
<tr>
<td>Australian magpie</td>
<td>Gymnorhina ibicans</td>
</tr>
<tr>
<td>Grey currawong</td>
<td>Strepera versicolor</td>
</tr>
<tr>
<td>Australian raven</td>
<td>Corvus coronoides</td>
</tr>
</tbody>
</table>
Appendix 11.

Programs of Funding Aimed at Land and Nature Conservation

Remnant Vegetation Protection Scheme

The Remnant Vegetation Protection Scheme (RVPS) was developed by the State Government in 1988 to enhance soil and nature conservation by protecting native vegetation on farm land. The scheme (which is jointly administered by CALM and Agriculture Western Australia (AgWA), with AgWA as the lead agency) provides a fifty percent subsidy towards the cost of protective fencing of native vegetation on farms, with landowners giving an undertaking that the fenced vegetation will be managed for nature conservation for a period of at least thirty years, convenient on title.

To be granted a subsidy, the area of vegetation to be fenced must be five hectares or more, and must be in good condition or able to be rehabilitated to good condition. Regular botanical surveys of RVPS fenced areas are undertaken to monitor the condition of the vegetation. This not only provides an excellent, objective measure of the longer term success of the scheme, but also an opportunity for landowners to improve their management practices by providing them with a measure of the impact of their management actions.

National Vegetation Initiative

The National Vegetation Initiative (NVI) is one of five components of the National Heritage Trust. The primary objective of the NVI is to protect and enhance native vegetation cover across Australia. The NVI incorporates aspects of the National Landcare Program, One Billion Trees and Save the Bush (see below). The NVI is planned to begin in 1997 and details are available from Ag WA and Greening Western Australia.

National Landcare Program/National Soil Conservation Program

The National Soil Conservation Program (NSCP) was established by the Federal Government in 1983 with the aim of developing and implementing a national strategy for the rehabilitation and sustainable use of the nation's soil and land resources. The program has provided funds to government, education and research institutions and landcare and other community groups for soil conservation projects, with particular emphasis given to fostering co-operation and co-ordination amongst government agencies and those in the local community working on land degradation problems.
In 1992/93, the NSCP, the One Billion Trees Program (OBT), the Save the Bush Program (STB) and the Federal Water Resources Assistances Program were incorporated into a One-Stop-Shop for Community Grants under the National Landcare Program (NLP). The NLP aim is to encourage community groups to responsibly manage and conserve land, water, biological diversity and cultural heritage in their area.

One Billion Trees
The One Billion Trees (OBT) program was initiated in 1989 by the Federal Government with the aim of catalysing revegetation projects aimed at land and nature conservation. It is administered in Western Australia by Greening Western Australia. The program provides grants for revegetation projects through the one-stop-shop for community groups under the National Landcare Program.

Save the Bush
The Save the Bush Program (STB) was established by the Federal Government in 1989 to assist with the preservation of biological diversity by the protection and management of remnant vegetation. It is administered by the Australian Nature Conservation Agency (ANCA) and by CALM in Western Australia. Grants from this scheme encourage, facilitate and support programs action and activities associated with the protection, management and investigation of remnant bush.

Ribbons of Green
Ribbons of Green is a community based Greening Australia project which started in 1989 with the aim of replanting and regenerating cleared strips of land with native plants and trees. The "ribbons" are corridors along roads or rail reserves, along waterways or linking patches of bush. These "ribbons" may only contribute slightly to overall land conservation, but they are important for the conservation of wildlife by providing bush corridors. The details of what to plant, where and when to plant, are developed by the local community in consultation with Greening Western Australia, government departments (AgWA, CALM), local government authorities, consultants and community groups.

Plants for Conservation
The aim of Plants for Conservation Program (PFC) is to support groups and individuals actively undertaking projects aimed at land and nature conservation. The program provides seedlings for revegetation projects aimed at land and nature
conservation. It is managed by Greening Western Australia and sponsored by ALCOA of Australia and Hamel Nursery.

Gordon Reid Foundation for Conservation
The Gordon Reid Foundation for Conservation aims to provide funds or other support for the purposes of enhancing community involvement in conservation within Western Australia.

Funds are provided for:

* the conservation of the Western Australian environment with emphasis on native flora and fauna;
* the identification and conservation of critical habitats and ecosystems;
* the conservation of rare, threatened and endangered species in WA;
* public education and awareness of environmental issues within WA;
* and research or other studies into other matters related to any of the above.

State Landcare Program
The State Government introduced the State Landcare Program in the 1987 to support Land Conservation District Committees and catchment groups in combating land degradation problems in rural areas. Financial support is provided to LCDCs to undertake projects in catchment planning, demonstrate conservation practices and for communications and training.
Appendix 12.

Projects in the Shire of Augusta-Margaret River to have received support through the State Landcare Program include:

<table>
<thead>
<tr>
<th></th>
<th>Project Title</th>
<th>Project Location</th>
<th>Objectives</th>
<th>State Assistance Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (1990/91)</td>
<td>Saltland Agronomy Trials</td>
<td>Nyabing/Pingrup LCD</td>
<td>To assess viable plant species that can be utilized on soils affected by salinity and flooding.</td>
<td>$1,315</td>
</tr>
<tr>
<td>2. (1990/91)</td>
<td>Purchase of a mobile drilling rig for drilling piezometers and observation wells.</td>
<td>Nyabing/Pingrup, Pingaring and Lakes LCDs.</td>
<td>By installing piezometers, farmer education and awareness of salinity processes will be enhanced.</td>
<td>$3,500</td>
</tr>
<tr>
<td>3. (1990/91)</td>
<td>Purchase of surveying equipment</td>
<td>Mynelup Catchment Group</td>
<td>It is proposed to purchase a set of surveying equipment for use by the LCD and the catchment group.</td>
<td>$1,104</td>
</tr>
</tbody>
</table>