1969

Long Term Rotation Trials

Ian Rowland

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/rqmsplant

Part of the Agronomy and Crop Sciences Commons, and the Plant Pathology Commons

Recommended Citation

This report is brought to you for free and open access by Research Library. It has been accepted for inclusion in Experimental Summaries - Plant Research by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
DEPARTMENT OF AGRICULTURE, W.A.

PLANT RESEARCH DIVISION

1969 RESULTS OF FIELD EXPERIMENTS

Ian Rowland, Research Officer.

LONG TERM ROTATION TRIALS

The object of these trials is to attempt to determine the best rotation for each area or at least give some guidelines for recommendations as to the optimum rotation. Also to determine the effect of various pasture phases on the performance of the following crops and the number of crops required to utilise any accrued benefit from the pasture.

In addition the trials on the Salmon Gums Research Station (68SG5) will attempt to compare cereal rotations on both volunteer and barrel medic pastures. It is also hoped to be able to get some estimate of grazing production from barrel medic and volunteer pastures.

The trial being run by the Geraldton District Office at Northampton (68GE8) will determine the best rotation for soil badly infected with cereal eelworm. Also find the effect of various lengths of pasture and fallow on the level of eelworm in the soil. The eelworm work is being carried out by Miss Goss of Plant Pathology.
HISTORY;
/ SOIL TYPES & VEGETATION:

W 56 H : Pdk 3E on Wongan Hills Res. Stn.
Virgin Site.
Wongan sandy loam.
Smoke bush, wattle, low scrub & isolated mallee patches.

66M 29 : Pdk 5AE on Merredin Research Station.
Old land, cropped 1962 to 1964, sown to barrel medic in 1965.
Sandy clay loam.
Salmon Gum and Gimlet.

67BA 6 : Pdk 7 on Badgingarra Research Station.
Virgin site.
Sand over gravel at 2 - 8 inches.
Low native scrub.

Red brown loamy sand.
Standback, Jam & York Gum.

67 N 4 : Experimental pdk on Newdegate Res. Stn.
Old land, sown to subclover in 1962.
Sandy soil over gravel at 8-12 inches.
Mallee scrub.

Fleming gravelly sand.
Chittick and mallee.

68SG 5 : Pdk H5 on Salmon Gums Res. Stn.
Old land, cropped since 1964.
Northern two blocks are on Circle Valley sand, the Southern two on Kumari.
Mallee and medium eucalypts with teatree undergrowth.
TREATMENTS:

W 56 H:
- 2 years clover followed by 1, 2, 3 & 4 years wheat

66M29: 67BA6: 67C13: 67N4:
1. Crop continuously
2. Pasture
3. 1 year crop after 1 year pasture
4. 1 year crop after 2 years pasture
5. 1 year crop after 4 years pasture
6. 2 year crop after 2 years pasture
7. 2 year crop after 4 years pasture
8. 3 year crop after 3 years pasture

68E5:
1. Continuous wheat
2. " linseed
3. " pasture
4. 1 year wheat after 1 year pasture
5. 1 year linseed after 1 year pasture
6. 1 year wheat after 2 year pasture
7. 1 year linseed after 2 year pasture
8. 1 year linseed after 1 year pasture
9. 1 year linseed after 1 year pasture
10. 1 year wheat after 4 year pasture

68SG5:
1. Continuous wheat in Cyprus
2. 1 year crop after 1 year Cyprus
3. 1 year crop after 3 year Cyprus
4. 3 year crop after 3 year Cyprus
5. Continuous wheat in Volunteer pasture
6. 1 year crop after 1 year Volunteer
7. 1 year crop after 1 year Volunteer
8. 3 year crop after 3 year Volunteer

68GEB:
1. Crop continuously
2. 1 year crop after 1 year pasture
3. 1 year fallow, 1 year crop, 1 year pasture
4. 1 year crop after 2 year pasture
5. 1 year crop after 4 year pasture
6. 2 year crop after 2 year pasture
7. 1 year fallow, 2 year crop, 2 year pasture

Examples of reps and plots:
- (2 reps each year - 2 plots)
- (4 reps each year - 8 plots)
- (2 reps each year - 12 plots)
HARVEST YIELDS (Bushels/acre) FOR 1969:

W56H:

<table>
<thead>
<tr>
<th>Years clover</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>19.7</td>
<td>14.8</td>
<td>14.7</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19.6</td>
<td>16.2</td>
<td>17.1</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22.9</td>
<td>18.9</td>
<td>21.7</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23.1</td>
<td>17.3</td>
<td>19.8</td>
<td>19.4</td>
<td></td>
</tr>
</tbody>
</table>

2nd crop after fallow 11.9

The corresponding nitrogen levels, in lbs N/acre 3", from the plots before the 1969 crop was sown (i.e. from 1968 treatment) are:

<table>
<thead>
<tr>
<th></th>
<th>310</th>
<th>340</th>
<th>460</th>
<th>490</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>320</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>420</td>
<td>430</td>
<td>460</td>
<td>450</td>
</tr>
<tr>
<td>490</td>
<td>410</td>
<td>500</td>
<td>640</td>
<td>460</td>
</tr>
<tr>
<td>640</td>
<td>460</td>
<td>460</td>
<td>500</td>
<td>640</td>
</tr>
</tbody>
</table>

280lbs N/ac 3"

This is total N in the top 3" calculated from samples taken in March and including any coarse organic matter. The low N results for 3 and 5 years clover may have been caused by the poor initial planting, in 1966 and 1964 respectively, of these clovers. The 1969 yield for 1 crop after 3 years clover reflect the low N value after 3 years clover; however, that from 1 crop after 5 years clover does not.

66M29:

<table>
<thead>
<tr>
<th>Stage of rotation</th>
<th>Yield</th>
<th>N lbs/ac 3"</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 successive crops</td>
<td>2.4</td>
<td>85</td>
</tr>
<tr>
<td>1 crop after 1 year barrel medic</td>
<td>2.2</td>
<td>93</td>
</tr>
<tr>
<td>3 " " 1 " " " "</td>
<td>1.7</td>
<td>91</td>
</tr>
<tr>
<td>1 " " 2 " " "</td>
<td>3.3</td>
<td>91</td>
</tr>
<tr>
<td>2 " " 3 " " "</td>
<td>2.4</td>
<td>91</td>
</tr>
<tr>
<td>1 " " 4 " " "</td>
<td>3.8</td>
<td>91</td>
</tr>
</tbody>
</table>

Stage of rotation has been altered to allow for 1 year of pasture before the trial started. Drought badly affected all plots. There was a response to 2 years and over of barrel medic, by the first crop. Nitrogen levels are for the less than 2 mm fraction of the top 3" sampled in March.
Stage of rotation

<table>
<thead>
<tr>
<th>Stage of rotation</th>
<th>1st crop</th>
<th>3rd crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st crop</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>3rd crop</td>
<td>16.8</td>
<td></td>
</tr>
</tbody>
</table>

The 1st crop is an initial clearing crop on virgin land, before being sown to pasture. The continuous crop shows the effect of more thorough cultivation and a cleaner seedbed.

Stage of rotation altered to allow for 3 years previous pasture.

Stage of rotation

<table>
<thead>
<tr>
<th>Stage of rotation</th>
<th>3rd crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st crop after 1 year clover</td>
<td>9.0</td>
</tr>
<tr>
<td>2nd " " 4 " "</td>
<td>12.9</td>
</tr>
<tr>
<td>1st " " 5 " "</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Stage of rotation altered to allow for 5 years previous pasture.

Stage of rotation

<table>
<thead>
<tr>
<th>Stage of rotation</th>
<th>3rd crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st crop after 1 year clover</td>
<td>19.7</td>
</tr>
<tr>
<td>2nd " " 6 " "</td>
<td>25.4</td>
</tr>
<tr>
<td>1st " " 7 " "</td>
<td>20.8</td>
</tr>
</tbody>
</table>

Stage of rotation altered to allow for 5 years previous pasture. Linseed yields decreased by cutworm damage and the dry conditions at flowering.

Stage of rotation

<table>
<thead>
<tr>
<th>Stage of rotation</th>
<th>2nd wheatcrop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st crop after 1 year linseed</td>
<td>29.2</td>
</tr>
<tr>
<td>1st " " 6 year clover</td>
<td>35.1</td>
</tr>
<tr>
<td>2nd linseed crop</td>
<td>32.9</td>
</tr>
<tr>
<td>1st crop after 6 year clover</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Stage of rotation altered to allow for 5 years previous pasture. Barrel medic sown in 1968 never established and the lack of pasture and the extra working the soil received possibly accounts for the lack of response to a year of improved pasture.

Stage of rotation altered to allow for 4 years of crop prior to commencement of the trial. Drought had badly affected all of the plots. Barrel medic sown in 1968 never established and the lack of pasture and the extra working the soil received possibly accounts for the lack of response to a year of improved pasture.

23.2.70
IR:EH.