Glasshouse Trials 1970

M G. Mason

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/rqmsplant

Part of the Agronomy and Crop Sciences Commons

Recommended Citation
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA’s research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA’s archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA’s research library website, DAFWA’s main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA’s research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
GLASSHOUSE TRIALS, 1970.

M.G. MASON, RESEARCH OFFICER

Two glasshouse trials were carried out:-

(1) Effect of Placement of Urea and Soil Moisture Level on Germination of Wheat.

(2) Effect of Placement of Urea on Germination of Wheat, Oats, Barley, Linseed and Rape.

1. Germination of wheat was adversely affected by drilling urea in contact with the wheat seed and also by high rates broadcast. Rates used were the equivalent of 50, 100, 150, 300 and 450 lb urea/acre. Generally the effects were not as severe (at least at the lower rates) as have been observed in field trials. This may be mainly due to the greater intensity of water application in the pots compared with the field situation, even though both situations received the same total amount of rain.

The harmful effects were of three types:-

(a) Delayed germination.
(b) Reduction in the maximum number of plants germinating.
(c) Death of plants already emerged.

The effect of broadcast applications was mainly on the death of emerged plants. Drilled urea had an effect at all three stages. These effects could have been due to a number of causes and all could have been operating in this case. Delayed germination could have been due to high osmotic pressure of the soil solution due to large amounts of fertiliser. The main effect would have been due to the presence of high levels of free ammonia which is formed during hydrolysis of the urea. Free ammonia is toxic to plants. A third factor could have been due to a build up in the level of nitrite nitrogen during the later stages. This nitrite nitrogen is also toxic to plants and could have been the cause of some of the later plant deaths. Nitrite nitrogen is an intermediate product of the process of nitrification from ammonium nitrogen to nitrate nitrogen.

\[
\text{Ammonium} \xrightarrow{\text{(nitrosomonas)}} \text{nitrite} \xrightarrow{\text{(nitrobacter)}} \text{nitrate}
\]

High levels of free ammonia tend to affect the nitrobacter more than nitrosomonas, so that the second part of the process is slowed down more than the first part. This results in a build up in the level of nitrite nitrogen, which is normally converted to nitrate nitrogen as quickly as it is formed.

As would be expected the harmful effects on germination were more marked as the rate of urea was increased. However, the degree of harm caused was also influenced by pre- and post seeding moisture levels. If the pots were watered to simulate rain immediately after seeding, the harmful effects of drilled urea were reduced considerably. If no rain was received after seeding the harmful effects were greater in initially moist soil than in dry soil. This latter effect is due to the fact that there is just enough moisture to start the seeds germinating and hydrolysis of urea also commences, resulting in the formation of free ammonia. However, there is not enough moisture to dissolve and remove much of this ammonia from the immediate vicinity of the germinating seeds.

\[\ldots\ldots\ldots./2.\]
Therefore the germinating seeds would be exposed to high concentrations of free ammonia.

Maximum harm to germination in the field would be expected when the crop is sown into moist soil and there is a rainless period following planting.

2. The cereals wheat, oats and barley were sown to a depth of one inch, while the linseed and rape were planted ½ inch deep. Rates of urea were 100 and 300 lb/ac drilled or broadcast and the super rate was equivalent to 230 lb/ac.

Within the cereals, barley was relatively unaffected, as regards germination, with all treatments. Wheat and oats were adversely affected to some extent. At the higher rate the oats were affected worse than wheat.

By comparison, the linseed and rape germination was affected a great deal more than any of the cereals. Both drilled and broadcast applications of urea had drastic effects on rape and linseed. Rape was affected a little more than linseed. In addition the super drilled with the seed was almost as harmful to germination as was the urea.

The super reduced emergence of rape and linseed from 86% to 47%. Emergence of both crops was further reduced to about 14% by drilling urea at 100 lb/acre with the seed. When the rate of urea was 300 lb/acre only 4% of the plants that were capable of germinating, did so. Urea broadcast at either rate had an adverse effect on emergence of rape, whereas linseed was only affected by the high rate of urea broadcast.

The effect of super was probably more marked than in the field because it was powdered and placed in close contact with the seed.
Fig. 1

Wheat: ○ ○ Nil Nitrogen, ○ ○ Urea 300 lb/ac Drilled, ○ ○ Urea 300 lb/ac Broadcast

Lentils: ▲ ▲ Nil Nitrogen, ▲ ▲ Urea 300 lb/ac Drilled, ▲ ▲ Urea 300 lb/ac Broadcast

Barley: ○ ○ Nil Nitrogen, ● ● Urea 300 lb/ac Drilled, ● ● Urea 300 lb/ac Broadcast

Number of Plants Sown

DATE COUNTED
FIG 3

- LINSEED - SUPERPHOSPHATE 230 lb/acre + UREA 30 lb/acre DRILLED
- LINSEED - SUPERPHOSPHATE 230 lb/acre DRILLED + UREA 30 lb/acre BROADCAST
- RAPID - SUPERPHOSPHATE 230 lb/acre + UREA 30 lb/acre DRILLED
- RAPID - SUPERPHOSPHATE 230 lb/acre DRILLED + UREA 30 lb/acre BROADCAST

PERCENT OF TOTAL ERWINIA