The balancing act

David Weaver

Department of Agriculture and Food, Western Australia, david.weaver@agric.wa.gov.au

Follow this and additional works at: http://researchlibrary.agric.wa.gov.au/conf_papers

Part of the Agriculture Commons, Environmental Health and Protection Commons, Environmental Monitoring Commons, Natural Resources Management and Policy Commons, Soil Science Commons, Sustainability Commons, and the Water Resource Management Commons

Recommended Citation

IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, policies or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
1. Introduction

Nutrient management is as much a global issue as a local one with a balance required between economics and environment, inherent biological limitations and expectations of nutrient use efficiency, and traditional fertiliser practices and actual enterprise nutrient requirements.

The concept of nutrient balance depends on context and scale. Nutrient balance can be considered at a global scale, where issues of nutrient stocks, cycles, depletion and transfer of a particular element are important. For a single farm enterprise, nutrient balance might be considered in terms of phosphorus (P) inputs into and outputs from the enterprise. This is commonly known as a farm-gate nutrient balance, where the difference between inputs and outputs is nutrient surplus, and the conversion of inputs to outputs is nutrient use efficiency. Equally, a farm might consider nutrient balance in terms of the balance of nutrients within a particular soil, paddock, or crop where some nutrients are in sufficient supply and others are deficient.

This paper will consider these aspects of nutrient balance, and will indicate where these imbalances exist as a basis for improvement.

2. Global issues

Global nutrient cycles and transfers have changed since the industrial revolution. Prior to this era, humanity was intimately involved in agricultural production through the utilization of wastes. Since human requirements for nutrients such as P are quite low, these pre current era cycles could be considered closed and sustainable. Since the industrial revolution, global nutrient cycles have altered with the discovery of phosphate rock and commercial fertilizer manufacture. Now more than 50% of humanity is urbanized and disconnected from food production. Major nutrients such as N, P and K recycle in nature, but human intervention has now created a mainly linear, non-recycling, open ended system (Figure 1). Recycling of farm nutrients (such as by the use of sewage sludge in farming) is limited in Australia, and most of these finite resources now enter the ocean. This cycle would only be sustainable if raw materials were in infinite supply, or if elements discharged to deep ocean sediments could be recovered easily. Unfortunately neither of these is true, as indicted by recent assessments of phosphate rock reserves by the USGS in 2005 (Figure 2).

![Figure 1. Pre (a) and post (b) industrial revolution P cycles](image)

![Figure 2. Years of extraction of phosphate rock remaining based on reserves at 2005 and a 2% annual increase (USGS, 2005).](image)
Figure 3. Box and whisker plots showing the variation in P use efficiency (left pane) and N use efficiency (right pane) across landuses. Boxes show 25th, 50th and 75th percentiles. Whiskers extend to 10th and 90th percentile and points show outliers. A value of 1 on the y-axis is 100%.

Figure 4. Surplus (kg ha\(^{-1}\)) as a function of input (kg ha\(^{-1}\)) for Cattle for Beef, Cattle for Dairy, Mixed Grazing, Annual Horticulture, Cropping and Grazing/Cropping. Phosphorus (left) and Nitrogen (right). 1:1 line shows 100% of input as surplus.

Figure 5. P output (kg ha\(^{-1}\)) as a function of P input (kg ha\(^{-1}\)) for Cattle for Beef, Cattle for Dairy, Mixed Grazing, Cropping and Grazing/Cropping and Annual Horticulture. Surplus (kg ha\(^{-1}\)) shown by circle size. Dotted lines show Nutrient Use Efficiency. Trendline and 95% confidence ellipse shown for optimum zone.

Table 1. Percentage of high P status soil samples that have other nutritional or soil chemical issues

<table>
<thead>
<tr>
<th>Issue</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium deficiency</td>
<td>27</td>
</tr>
<tr>
<td>Sulphur deficiency</td>
<td>65</td>
</tr>
<tr>
<td>Potassium and Sulphur deficiency</td>
<td>21</td>
</tr>
<tr>
<td>Soil Acidity</td>
<td>45</td>
</tr>
</tbody>
</table>

With the large proportion of high P status soils, it is likely that issues other than P are often limiting production and P outputs in products, and therefore limiting nutrient use efficiency. Some farmers already realize this and apply compound fertilizers and soil amendments to address these issues. Amongst a range of climatic, environmental and management factors, the variability of data points in Figure 5 may also be a reflection of the variability in individual approaches to nutrient management. The data in the optimum zone in Figure 5 will capture the farmers who recognize the importance of nutritional balance within their farming system (and some who don’t), and hence the general trend within the data is for nutrient outputs and nutrient use efficiency to go against the trend and increase with increasing inputs. This means that nutrient surplus in this zone, assuming that nutritional balances are right, increases less than it would otherwise.

Whilst the relationship between nutrient surplus and input is strong (Figure 4) and indicates greater input leads to greater surplus, there may be some scope to limit the impact that additional inputs have on surplus (up to a limit defined by the optimum zone), if other nutritional factors are optimized.

4. Conclusions
We are approaching a period where conventional nutrient sources are likely to become more scarce. It is imperative from economic and environmental perspectives to examine nutrient balance at all scales, from within the farm to the global scale. Treating conventional nutrient sources as a renewable resource needs to be re-examined.

At the large scale, this may require reclaiming nutrients from wastes (e.g., sludges). At the farm scale, this will require careful examination of the factors affecting the efficiency of nutrient utilisation, down to a paddock scale balancing of nutrients essential for agriculture.