9-1952

Farm fencing hints - straining the wires

J A. Mallett
Department of Agriculture

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3

Part of the Agriculture Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3/vol1/iss5/4

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 3 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
3—STRAINING THE WIRES

By J. A. MALLETT

HAVING erected the posts and run the wires, the next task is that of straining the wires and—where barbed wires are used—tying them to the posts. Where wires have to be joined in the fence, the “figure eight knot,” or “fencer’s knot” as it is often called, is probably the best of all. It is easy to make, once one has mastered the knack, holds safely under strain, and may be pulled through a hole in a fence-post if the points are bent over.

![Diagram of the figure eight knot](image)

The diagram (Fig. 1) explains the knot more clearly than words. Note that when tied correctly the two ends lay side by side with one pointing upward and the other downward. Barbed wires may be joined with this knot if the end barb is removed from each wire to be joined.

When actually using the wire-strainers and joining two wires at the point of strain—as when straining from a position in the centre of a panel, midway between two strainer-posts—the double loop splice (Fig. 2) is deservedly popular for reasons which will become obvious later.

Straining may be carried out from the strainer-posts if desired, but the midway position is favoured for long strains as the tension is more evenly distributed along the panel.
Whichever method we decide to use, the wires will need to be secured to at least one strainer-post. If we strain from the centre of the span they will be tied at each outer end.

Strainer posts are not usually bored, in fact this practice has little to recommend it, except that it facilitates the use of some types of wire-strainers. Mark your posts with the position of the wires, to give correct spacings, then take a couple of turns round the post and twist the wire round itself as shown in Fig. 3. It is handy to have a few feet of wire round the posts if breaks have to be repaired at some later date.

If you are using hard, brittle wire do not finish off the tie with a tight spiral as shown in Fig 3 (A). It looks neat, but is liable to snap under tension and is difficult to undo if repairs are to be carried out. Use a longer spiral or try one of the ideas shown in Fig. 3 (B) or (C).

STRAINING THE WIRES

There are many types of wire-strainer on the market, one of the most popular being the kind which has gripping jaws to hold the wires and a pivoting lever with two hooks which engage alternately in the links of a chain. This may be used in the centre of a span or, by...
the use of a loop or short length of wire, may be used close up to the strainer post.

If used in the centre of the span, one wire has a loop made in the end to give half the double loop splice shown in Fig. 2. The end of the other wire is passed through the loop and the strain is applied. When the wire is tight enough, the unlooped wire is pulled through the loop as far as it will go and then bent back on itself and twisted to form the second loop around the gripping jaws of the wire-strainer as shown in Fig. 4. If desired, the double loop may be made away from the gripping jaws but the method described gives a tighter join.

For straining at the strainer-post, one pair of gripping jaws—those on the hook portion of the wire-strainers—are engaged on a short wire temporarily looped round the post. The jaws of the travelling, or chain portion of the wire-strainers are then engaged on the wire to be strained and when the required degree of tension has been achieved, the fence wire is taken round the strainer-post and secured.

FARM-MADE STRAINERS

Probably one of the earliest strainers ever used was a variation of the old "Spanish windlass" idea, the simplest form of which was a forked branch with a small hole bored through the butt end. The wire to be strained was slipped through the hole and bent over, then the fork was rotated, as shown in Fig. 5, causing the wire to tighten. In the diagram the strainer post is bored and, to complete the straining, a round punch is hammered into the hole jamming the wire tightly against the wood. Some of the wire is then unrolled quickly from the fork which is passed round the post and over the wire and the tie completed in the usual manner.

The fork may also be used to strain in the centre of a span employing the technique described for another home-made strainer shown in Fig. 6. This utilises the same windlass principle but is neater and more portable than the forked stick.

The outfit consists of a 12in. or 15in. length of 3/8in. water-piping drilled with a 1/2in. hole to take the wire and two 3/8in. holes to take a length of round steel used as a tommy-bar. The bar is slightly tapered at one end and the other end may be turned over to form a loop for convenience in handling. An 8in. length of strap iron with a small hole near one end, makes a handy key for twisting and untwisting wires, and will save wear and tear on the fingers.

To use the strainer in the centre of a panel, first make a loop on the end of one wire. Try it the easy way by bending the wire back, putting the tommy-bar through the bight to hold it, then slipping the end of the wire through
the hole in the key as at Fig. 7. By simply rotating the key round the wire you can make a neat spiral of any desired degree of tightness.

Having made the loop, pass the end of the other wire through the loop and insert the wire in the small hole in the length of piping. Bend the wire over to hold it in position and then insert the tommy-bar in one of the large holes in the pipe and rotate the pipe so that the wire rolls up as on a windlass. (Fig. 8.)

Continue turning until the wire is taut, with the piping windlass hard up against the wire loop, then drag the piping back away from the loop so that the wire bends over to form a hook (Fig. 9). Slip your key or the tommy-bar through the hook and twist the piping round the wire to complete the double loop splice shown in Fig. 2.

For straining up to a bored post, the piping may be used in the manner described for the forked stick, but some farmers make a frame as shown in Fig. 10. The horizontal members of the frame are curved to fit snugly against the post and the piping is recessed into the side timbers and held there by two pieces of strap iron. Two tommy-bars may be used and, when the wire is sufficiently tight, one may be driven into the hole to jam the wire while the strainer is pulled away smartly from the post, allowing sufficient wire to unroll from the pipe to complete the tie.

When attaching wires to bored strainer posts, pass the first wire to the right round the post and the second to the left, alternating them so as to equalise the strain and lessen the tendency to twist the post in the ground.
The windlass principle is used in several types of factory-made wire-strainers and is perhaps best-known in the form of the permanent strainer shown in Fig. 11. This is a small cast metal "bobbin" about four inches long. The wire is slipped through the small hole and the bobbin is rotated by means of a tommy-bar until the wire is tight. A small bolt is then slipped through the hole to prevent the bobbin from unwinding and it is left in position on the fence, so that it can be tightened again when necessary. As one bobbin is needed for each length of wire, these permanent strainers would be rather costly on long fence-lines, but are useful for small enclosures.

BARBED WIRE
Most of the standard strainers may be used for tightening barbed wire, by simply joining a length of plain wire to the barbed and operating the strainer in the normal manner.

Barbed wire is tied to the fence-posts by short lengths of tie-wire. The usual method of tying, shown in Fig. 12 (A) is not particularly satisfactory as the wire is liable to slip off the posts and spoil the appearance of the fence as in Fig. 12 (B).

A neater finish is given by boring the top hole of the post at right angles to the fence-line instead of parallel to it as in Fig. 12. The wire is then tied with short lengths of wire, shaped staple-fashion, as shown in Fig. 13. Only the long end is twisted round the barbed wire.

(To be continued)

FREE TO FARMERS

The "Journal of Agriculture, W.A.," is free to bona fide farmers whether they be pastoralists, wheat-growers, orchardists, graziers, dairy farmers, beekeepers or market gardeners.

Non-farmers may receive the Journal on payment of 5s. a year (six copies) or 1s. each for single copies.

Address requests to be placed on the mailing list to The Editor, "Journal of Agriculture," Department of Agriculture, Perth.
Farmer after farmer... they're saying

Dunlop - greatest all-rounder on the land today

"Work them hard... work them long... work them anywhere... and you'll find, as we have, that Dunlop Tractor Tyres out-last the rest."

That's typical of the way farmers feel about Dunlop Tractor Tyres. When you fit Dunlop you get the greatest all-round tyre on the land, and the longest-lasting one. Year after year, you'll find you save money on Dunlop Tyres, because on all types of soil, they out-pull, out-last, out-grip and out-clean all others. Next time you are in town, call on your local Dunlop Dealer. He will give you sound advice on the right type of Dunlop Tyres for your Tractor.

DUNLOP TRACTOR TYRES

Out-pull, out-last, out-grip, out-clean all others

Please mention the "Journal of Agriculture, W.A.," when writing to advertisers.