1977 Experimental summary - Clover scorch

A Bokor

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/rqmsplant

Part of the Agronomy and Crop Sciences Commons, and the Weed Science Commons

Recommended Citation
1. Clover Scorch Fungicide Demonstration

2. Clover Scorch Disease Progress Curve

3. Clover Scorch Spore Survival

A. Bokor
Plant Pathologist
Albany Regional Office
1. Fungicide Demonstration Trial

77BU15

Aim:
To demonstrate the effect of a single early spray application of Benlate for clover scorch control compared with a schedule involving one or two follow-up treatments.

Site:
At Busselton, Yarloop-grass pasture with a history of severe clover scorch.

Experiment:
One rate of 200 g/ha on 0.75 ha plots.

Application dates
- 15/6
- 15/7
- 15/9

Management:
Normal grazing and hay production.

Assessments:
Disease appraisal on a 0-5 scale prior to each spray application and at hay cutting time. (40 assessments, each on area of 30 x 30 cm², per plot. Total yield assessments with pasture meter.

Results:
Effect of Early and Follow Up Benlate Sprays on clover scorch disease progress and pasture yield.

<table>
<thead>
<tr>
<th>No. of spray applications</th>
<th>Disease Score (0-5)</th>
<th>D.M. Yield kg/ha</th>
<th>Pasture Composition %</th>
<th>Clover Yield kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>June</td>
<td>July</td>
<td>Sept</td>
<td>Oct</td>
</tr>
<tr>
<td>Nil</td>
<td>0</td>
<td>0.3</td>
<td>0.8</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Comments:
1) At final assessment comparable disease control was detected regardless of the number of spray treatments.

2) All spray treatments increased pasture production but owing to the non-replication differences between treatments due to spraying could not be confirmed. All treatments resulted in marked increases in the percentage clover in the pasture.
iii) The disease was detectable on the plot sprayed three times at the time of closing for hay production. This could have been due to transfer of inoculum by the grazing animals from an adjacent untreated plot.

2. **Clover Scorch Disease Progress Curve**

Assessments were made of the progress of scorch disease in untreated grazed subclover pastures at Denmark, Albany and South Stirlings. Counts were made of infected petioles in 10 random pasture counts at weekly intervals during May to November. Spore counts were also made from washed leaves. Records of rainfall, temperature, relative humidity and leaf wetness were made at the Albany site.

Results indicate a gradual build up of disease following a low and sporadic incidence of scorch which was only detected about six weeks after the break.

3. **Survival of the Fungus**

Studies were continued with subclover trash from paddocks affected with scorch in the Albany District. Results confirm the previous year's finding that the fungal spores although plentiful and in a viable state on trash in December, were present in very low numbers in January.