1977

Fallow re-assessment (Merredin Research Station)

D Tennant

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/rqmsplant

Part of the Agronomy and Crop Sciences Commons, and the Weed Science Commons

Recommended Citation

DEPARTMENT OF AGRICULTURE

Western Australia

SUMMARY OF RESULTS 1977

FALLOW RE-ASSESSMENT

D. Tennant
Research Officer
Plant Research Division
FALLOW RE-ASSESSMENT - 72 M 29

Location Merredin Research Station

Treatments
1. Long Fallow - maximum moisture storage treatment. Cultivated at first rains in establishment year and subsequently when necessary for weed control.
2. Mechanical Fallow - cultivated early July in establishment year after completion of seeding operations and then cultivated when necessary for weed control.
3. Chemical Fallow - sprayed with weedicide to kill pasture before seed set in the establishment year.
4. Short Fallow - left in pasture during establishment year and cultivated after summer rains, if any.
5. Pasture-Crop - left in pasture during establishment year and cropped in assessment year.

Crop: Gamenya wheat.

Results:
1. Yields (Table 1) were significantly highest with long fallow.
2. Yields were higher with mechanical and chemical fallow than the pasture crop treatment and lowest with continuous cropping.
3. There was a slight benefit from mechanical than chemical fallowing.
4. Stored soil water at planting was of the order of 67 mm with long fallow, 57 mm with mechanical fallow, 49 mm with chemical fallow and 46 mm with the pasture-crop and continuous crop treatments.
5. These and similar relative differences in stored soil water at planting as obtained in all years other than 1974 were analysed relative to yields. Yields were shown to be significantly related to stored soil water at planting. Co-efficients of determination ranged from 0.87 to 0.97. High growing season rainfall in 1974 nullified differences in stored soil water which had developed over the 1973 treatment establishment year.
6. Yield increases obtained from every additional 10 mm of stored soil water at planting ranged from 100 kg ha$^{-1}$ to 162 kg ha$^{-1}$. The 1977 regression data gave a yield increase of 155 kg ha$^{-1}$/10mm of stored soil water.
TABLE 1
Growing Season rainfall and yields at Merredin

<table>
<thead>
<tr>
<th>Treatments*</th>
<th>Yields kg ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment Year</td>
<td></td>
</tr>
<tr>
<td>Continuous crop</td>
<td>662</td>
</tr>
<tr>
<td>Assessment Year</td>
<td></td>
</tr>
<tr>
<td>Continuous crop</td>
<td>-</td>
</tr>
<tr>
<td>Pasture crop</td>
<td>-</td>
</tr>
<tr>
<td>Chemical fallow</td>
<td>-</td>
</tr>
<tr>
<td>Mechanical fallow</td>
<td>-</td>
</tr>
<tr>
<td>Long fallow</td>
<td>-</td>
</tr>
<tr>
<td>Growing season</td>
<td>174mm</td>
</tr>
</tbody>
</table>

+ Trial established 1972
* Short fallow treatment not effective throughout.