Growing biserrula to improve grain and livestock production
Important Disclaimer

The Director General of the Department of Agriculture and Food and the State of Western Australia and their officers, employees and agents will not be liable, in negligence or otherwise, to any person for any loss, liability or damage arising out of an act or failure to act by any person in using, relying on or disseminating any information, representation or statements contained in this publication.

Mention of trade names does not imply endorsement or preference of any company’s products by the Department of Agriculture and Food, Western Australia, and any omission of a trade name is unintentional. Recommendations are current at the time of printing.

Copyright © Western Australian Agriculture Authority, 2010

Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever without prior written permission of the Western Australian Agriculture Authority.
Growing biserrula to improve grain and livestock production

Angelo Loi, Natalie Hogg, Brad Nutt, Clinton Revell and Diana Fedorenko
Department of Agriculture and Food, Western Australia
This publication was funded by Pastures Australia and brings together 15 years of research on biserrula in Western Australia. Major funders of the research were the Centre for Legumes in Mediterranean Agriculture (CLIMA) of The University of Western Australia and the National Annual Pasture Legume Improvement Program (NAPLIP). NAPLIP was a collaboration between Grains Research and Development Corporation (GRDC), Australian Wool Innovation (AWI), Commonwealth for Scientific and Industrial Research Organisation (CSIRO) and all states’ Departments of Agriculture. Contributions were also made by the Centre for Rhizobium Studies (CRS) of Murdoch University, The University of Adelaide and the Rural Industries Research and Development Corporation (RIRDC).

The contribution of the following growers with case studies is gratefully acknowledged: Phil Bear of Dowerin, Andrew Chambers of Ravensthorpe, Cameron Levett of Carnamah, John and Gordon McDougall of Tincurrin, John Munckton of York, Alf Niven of Carnamah and Jason Stokes of Chapman Valley.

We wish to acknowledge the people that throughout the years have been involved in R&D activities on biserrula: T Albertsen, P Arkell, M Barbetti, J Bee, A Blake, D Bowran, S Brown, A Butler, K Butler, S Carr, K Devenish, J Devenish, J Drew, N Eva, A Evans, M Ewing, K Falconer, D Ferris, K Foster, K Gajda, K Ghamkhar, G Glasson, N Guise, D Hamilton, S Hoadley, J Howieson, C Hudson, D Kirby, R Latta, N Lauritsen, A Lindsay, A Liu, A Lyons, C Matthews, P Matson, D McClements, S Micic, D Moir, P Nichols, D Nicholson, C Peek, S Penny, D Pickett, T Piper, M Poole, N Reeve, D Rogers, I Rose, B Sage, P Skinner, W Smart, R Snowball, V Stewart, C Valentine, T Wiley, B Wintle, R Yates and M You.

Many thanks also to Bill Bowden for contributing to this publication with nitrogen matters, Ross Kingwell with economic analyses, Roy Butler and Dean Thomas with nutritional composition of biserrula and Noel Bubner of Balco Australia with nutritive value of cereal straw.

Thanks to Mike Davies for photographic materials and Femme Roberts for coordinating graphic design and printing.
Foreword

Biserrula pelecinus is a new genus of pasture legume which was developed for commercial agriculture by a team of Perth-based legume pasture scientists in the early 1990s. Biserrula is an annual pasture legume that is found in natural grasslands of the Mediterranean Basin, frequently on acidic soils derived from granite. It was this feature that first caught the eye of researchers who were attempting to develop species that could tolerate the soil stresses of acidity and low moisture-holding capacity. These stresses are common in WA and when they occur together they are problematical for the survival of annual medicos and clovers. Biserrula has subsequently been shown to possess a number of important features that give it advantages over the traditional pasture species in mixed farming systems.

Biserrula can nodulate reliably upon acidic, sandy loam soils, and as such can be sown with confidence on soils where annual medicos fail to nodulate. A major reason for this is that biserrula has very specific acid-tolerant nodule bacteria (rhizobium) that survives well and colonises these soils. Biserrula also has a root system that rapidly penetrates to depth. This allows it to extract water from deeper in the soil profile than many other annual species. One consequence of this is that biserrula can extend the length of the growing season by accessing deep moisture. This characteristic also gives it some protection during dry autumn conditions, because the tap root is rapidly developed. This rooting characteristic allows it to be sown on soils that are too dry for reliable production from annual clovers.

Further to these attributes, biserrula produces large quantities of hard (impermeable) seeds. The seasonal and annual patterns of seed softening ensure the soil seed bank of biserrula is one of the most resilient of all pasture legumes so far studied. This characteristic makes it ideally suited to intensive cropping systems as enough seed is produced in one season to grow a productive biserrula pasture after as many as three consecutive biserrula pasture crops. Although the seeds are produced above ground, like medicos, biserrula can be grazed in much the same way as medicos and subterranean clover as there is an abundance of feed at the time of season when the pods are presented to the animals. Further, a large amount of the mature seed will pass intact through the digestive tract.

Biserrula is an excellent source of biological nitrogen for subsequent crops and can also play an important role in weed management systems. The latter attribute arises because the plant is less palatable than most weeds during spring, so the weeds are selectively removed. With sowing rates of around 5 kg/ha biserrula is one of the cheapest pasture legumes to establish. Biserrula can be distinguished from serradella because it has distinctive fern-like leaves, pale purple to blue flowers and a serrated pod containing up to 20 small yellow seeds.

The two cultivars of biserrula currently available, Casbah and Mauro®, differ by several weeks in maturity, allowing the species to be grown across environments with annual rainfall between 325–700 mm.
This management package consolidates the technical information about growing biserrula and documents a number of case studies where growers have successfully incorporated biserrula into their farming systems. Key features include establishment of biserrula, grazing management—particularly to reduce the risk of photosensitisation in sheep—value to subsequent crop production and economic impact.

The manual is intended to be a practical guide for farmers and their advisers to assist them in making decisions about the value of biserrula in their farm business and how to optimise the management of biserrula to ensure potential benefits are realised.

The effort of all the contributors to combine the information in an easy-to-read document is to be commended.

Prof John Howieson
Director
Centre for Rhizobium Studies
Murdoch University
Growing biserrula to improve grain and livestock production

Contents

Acknowledgements ... 2
Foreword .. 3

Description of biserrula .. 6
 Origin .. 6
 Climate adaptation ... 6
 Soil adaptation ... 6
 Plant traits .. 7
 Productivity .. 8
 Nutritive value ... 8

Management of biserrula ... 9
 Site preparation ... 9
 Establishment ... 10
 Insect control ... 10
 Weed control .. 10
 Grazing .. 11
 Seed harvesting ... 11
 Companion species ... 11
 Farming systems ... 11

Biserrula’s contribution to livestock production 13
 Extended period of green feed availability 13
 Increased livestock production .. 14

Biserrula’s benefits to crop production 19
 Organic nitrogen supply ... 19
 Reduced weed burdens ... 23
 Sustainable crop rotations .. 28

Economics of farming systems with biserrula 32
 Drivers of profitability in mixed farming systems with biserrula
 Drivers of profitability in grain production systems with biserrula

Farmers’ experiences with biserrula .. 35
 ‘Photosensitivity has nothing on lupinosis; biserrula defeats
 Biserrula reducing money spent on stock feed’ 39
 ‘Biserrula helping the fight against resistant ryegrass
 and other weeds’ .. 42
 ‘Biserrula proves to be a winner for intensive
 cropping’ .. 45
 ‘Biserrula helps to control resistant ryegrass’ 48
 ‘Improving the stocking enterprise and increasing
 profits’ ... 50
 ‘Using biserrula to control barley grass’ 53

References .. 55
Key messages

- Casbah and Mauro are the first commercial cultivars of biserrula (Biserrula pelecinus) worldwide.
- The descriptions of the cultivars differ as specific traits of wild populations were selected to fit cropping rotations of different intensity.

Origin

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Casbah</th>
<th>Mauro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed and rhizobium collection</td>
<td>By P Beale, A Lahlou and M Bounejmate in Morocco in 1991</td>
<td>By A Loi, SJ Carr and M Porqueddu in Sardinia in 1995</td>
</tr>
<tr>
<td>Development and selection</td>
<td>By A Loi, JG Howieson and SJ Carr at the Cooperative Research Centre for Legumes in Mediterranean Agriculture (CLIMA)</td>
<td>By A Loi at CLIMA and field tested within the National Annual Pasture Legume Improvement Program (NAPLIP)</td>
</tr>
<tr>
<td>Release</td>
<td>1997</td>
<td>2002</td>
</tr>
</tbody>
</table>

Climate adaptation

- Rainfall range
 - Casbah 325–500 mm
 - Mauro 450–700 mm
- Drought tolerance: Moderate-high in comparison with other annual pastures
- Frost tolerance: Sensitive, frost will reduce seed production

Soil adaptation

- Soil type
 - Loams and clay loams
 - Gravelly and loamy sands
 - Sand over clay
- pH (calcium chloride): 4.2–7.5
- Waterlogging tolerance: Nil
- Salt tolerance: Nil
- Aluminium tolerance: Moderate
- Rhizobium: Biserrula specific
Plant traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed</td>
<td>
 colour: Yellow
 shape: Heart-like
 weight: Casbah ≈ 1.2 mg
 Mauro<sup>a</sup> ≈ 1.3 mg</td>
</tr>
<tr>
<td>Pod</td>
<td>
 colour: Brown (fully matured)
 shape: Flat with serrated edges, soft texture
 seeds per pod: Casbah ≈ 20 seeds
 Mauro<sup>a</sup> ≈ 15 seeds</td>
</tr>
<tr>
<td>Cotyledons</td>
<td>type: Aerial</td>
</tr>
<tr>
<td>Leaf</td>
<td>shape: Compound leaf (fern-like) with a V-shaped indentation in the tip of each leaflet</td>
</tr>
<tr>
<td>Flower</td>
<td>colour: Pale purple to blue</td>
</tr>
<tr>
<td>Roots</td>
<td>length: 2 m or longer in unrestricted soils</td>
</tr>
</tbody>
</table>

Development

<table>
<thead>
<tr>
<th>Stage</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth cycle</td>
<td>Annual</td>
</tr>
<tr>
<td>Seedling emergence–flowering</td>
<td>Casbah 100–105 days
 Mauro<sup>a</sup> 115–120 days</td>
</tr>
<tr>
<td>Flowering–pod maturity</td>
<td>≈ 4 weeks</td>
</tr>
<tr>
<td>Hardseededness</td>
<td>Casbah higher proportion of hard seeds than Mauro<sup>a</sup>
 Both cultivars with slow seasonal and annual patterns of seed softening</td>
</tr>
</tbody>
</table>
Description of biserrula

Productivity

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter production</td>
<td>5000–7000 kg/ha is typical Over 11 000 kg/ha recorded in stands managed for seed crops</td>
</tr>
<tr>
<td>Seed yield</td>
<td>300–1500 kg/ha (depending on total dry matter and harvesting method)</td>
</tr>
<tr>
<td>Feed availability</td>
<td>Earlier than subclover as seedlings can survive false breaks Extended by up to 4 weeks at the end of the growing season compared to subclover</td>
</tr>
<tr>
<td>Feed palatability</td>
<td>During the green feed period, stock can preferentially graze weed species out of the biserrula pasture</td>
</tr>
</tbody>
</table>

Nutritive value

<table>
<thead>
<tr>
<th>Component</th>
<th>Vegetative</th>
<th>Reproductive</th>
<th>Senesced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter digestibility (%)</td>
<td>81</td>
<td>76</td>
<td>63</td>
</tr>
<tr>
<td>Metabolisable energy (MJ/kg dry matter)</td>
<td>11.7</td>
<td>10.9</td>
<td>8.7</td>
</tr>
<tr>
<td>Crude protein (%)</td>
<td>28</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Neutral detergent fibre (%)</td>
<td>22</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Acid detergent fibre (%)</td>
<td>15</td>
<td>16</td>
<td>30</td>
</tr>
</tbody>
</table>

Biserrula is a prolific seed producer
Management of biserrula

Key messages

- Biserrula should be managed as a grain crop when first sown on any paddock as the future productivity of the stand depends on seed yield in the year of establishment.
- Casbah is a public variety and can be freely bought and sold.
- Mauro® is protected under the Plant Breeders Right Act 1994 and the propagation of seed can only be carried out by agreement with licensees.

Site preparation

<table>
<thead>
<tr>
<th>Paddock selection</th>
<th>Avoid paddocks treated with sulfonylurea (SU) herbicides in the previous year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avoid deep infertile sands or soils subject to waterlogging (see soil adaptation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weed control</th>
<th>Spray-top in previous spring or choose paddock where broad-leafed weeds were controlled well in a cereal or canola crop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best establishment is achieved if weeds can be controlled prior to sowing with a knockdown herbicide. This applies particularly to broad-leafed weeds such as doublegees</td>
</tr>
<tr>
<td></td>
<td>Apply knockdown prior to establishment</td>
</tr>
<tr>
<td></td>
<td>There are no chemicals registered to control broad-leafed weeds in biserrula. If livestock is available, use heavy stocking rates for short periods</td>
</tr>
</tbody>
</table>

‘[Biserrula] is easy and cheap to establish and is persistent, all it requires is to keep weeds under control so that it can establish properly in that first year’.²
Management of biserrula

Establishment

| Inoculation | Essential with ‘Biserrula Special' rhizobium
Biserrula cannot use background rhizobia from other legumes |
| Seeded coated with peat-based inoculant and lime pelleted
Or, dry and peat-based granules mixed with seed and drilled at sowing |
| Re-inoculate if a new strain of biserrula rhizobium is produced |
| Sowing time | Autumn to early winter
Low rainfall areas: at the break of season (if weed control started in previous year)
High rainfall areas: if required delay sowing to achieve good weed control with a knockdown herbicide |
rate	5 kg/ha is adequate in most cases but can vary between 2–10 kg/ha (lower rates when used in mixtures)
depth	Shallow sowing is critical, preferably < 2 cm
method	Preferably drilled. Seed can be top-dressed on the soil surface and covered with trailing harrows
Fertilisation	Phosphorus and potassium are the most important; apply according to soil tests

Insect control

<table>
<thead>
<tr>
<th>Insects</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphids</td>
<td>Control is essential, especially for seed production</td>
</tr>
<tr>
<td>Red-legged earth mite</td>
<td>Control is essential prior to sowing until 3-leaf stage</td>
</tr>
<tr>
<td>Lucerne flea</td>
<td>Biserrula tolerates moderate infestation</td>
</tr>
<tr>
<td>Budworm</td>
<td>Biserrula tolerates moderate infestation</td>
</tr>
</tbody>
</table>

Weed control

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grazing</td>
<td>Grazing biserrula is an excellent non-chemical option for weed control, including herbicide-resistant weeds</td>
</tr>
</tbody>
</table>
| Chemical | No herbicides are registered for use in biserrula pastures
Avoid spray-topping in the establishment year as it can decrease seed yield by up to 85 per cent
Weed-wiping combined with grazing can control ryegrass and wild radish effectively |

Biserrula-dominant pasture
Grazing

| Establishment year | Low stocking rate allows maximum seed set
Sheep should be removed at flowering and not replaced until after pod maturity
Approximately 45 per cent of seed survive ingestion by sheep (more in cattle)
Seed is spread in manure
Established stands | Biserrula tolerates significant grazing pressure
Winter grazing promotes prostrate growth
Moderate grazing after flowering will allow seed set
Summer grazing has little impact on future plant density and long-term persistence |

Companion species

| Casbah and Mauro^a | Both cultivars grow well in mixtures with subclover, serradella, gland clover, rose clover and perennial and annual grasses |

Farming systems

| Casbah | Suited to intensive crop/pasture rotations
Should be cropped the season after establishment year
Can persist through a multiple crop phase
Mauro^a | Suited to longer pasture phases
Can persist as a permanent pasture |

Seed harvesting

| Machinery | Biserrula can be harvested with a grain harvester but major modification to the drum is required
Seed can also be successfully harvested with specialist suction harvesting equipment |

Biserrula seed in sheep pellet
Harvesting biserrula seed
Biserrula mixed with barley
Management of biserrula

Rules of thumb

- Avoid paddocks that are:
 - waterlogged
 - saline
 - deep infertile sands
 - frost prone
 - treated with SU herbicides in the previous season.
- Control weeds prior to biserrula establishment.
- Manage biserrula like a crop in the establishment year:
 - inoculate
 - fertilise
 - control weeds
 - control insects.
- Graze heavily in summer.
- Crop the paddock the year after biserrula is established.
- Control aphids to ensure good seed production.
- Reduce risk of photosensitisation in stock by:
 - grazing rotationally
 - monitoring stock while biserrula is flowering.

Main uses

Farmers grow biserrula in Western Australia to:

- Make crop production more sustainable and profitable
- produce nitrogen
- control herbicide-resistant weeds like ryegrass and radish
- replace lupins and subclover in intensive cropping systems
- Increase livestock production
- fill feed gaps in summer-autumn
- extend length of growing season
- produce prime lambs.
Biserrula’s contribution to livestock production

Key messages

- Biserrula pastures extend the period of green feed at both ends of the annual growing season and provide quality feed for livestock.
- Photosensitisation in livestock grazing biserrula can be managed by monitoring through flowering and removing stock from pasture if early symptoms occur.

Extended period of green feed availability

Biserrula is a valuable alternative pasture legume, especially for farming systems with livestock, as it can potentially extend the period of available green feed at both ends of the growing season. This relative advantage over other annual pastures is explained by seed and seedling attributes at the beginning of the growing season and by root depth at the end.

Well-managed stands of biserrula produce large amounts of seed which are stored in the soil seedbank. Biserrula’s seasonal and annual patterns of seed softening are such that a proportion of the seed is permeable to water and ready to germinate in autumn. Seeds germinate rapidly on the opening rains and established seedlings have a stronger capacity to survive false breaks than subclover seedlings.

At the end of the growing season, biserrula’s deep roots (up to 2 m in length) can access water from the soil below the root zone of annuals with shallower roots and produce green feed for up to four more weeks compared with subclover.

These plant traits make biserrula a good source of forage that farmers can use tactically to fill feed gaps at the end of the growing season, before crop stubbles become available, and early in the following season.

‘The bulk [of biserrula] that we have left on the paddock in summer is like a hay crop’.

Sheep grazing a biserrula pasture in spring 2007 at Tincurrin