The wallaby menace in the Kimberleys

A R. Tomlinson
Department of Agriculture

C D. Gooding
Department of Agriculture

L A. Bennetts
Department of Agriculture

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3/vol3/iss5/18

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 3 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
COUNTLESS thousands of Sandy Wallabies (Macropus agilis) have long been a menace to the pastoral industry in the Kimberleys. These animals eat almost the same foods as the sheep and cattle and have substantially reduced the stock-carrying capacity of the river-frontage areas where they are found in the greatest numbers. Research into control methods was commenced in 1952 when Mr. L. A. Harrison undertook some investigations designed to ascertain the best line of approach to a poisoning campaign.

Some preliminary experiments were attempted using lures and supplements, but because of the inconclusive nature of the results they were all repeated, this time under controlled conditions. Seasonal conditions in this period were similar to those experienced in the previous season. Conditions up until March, 1954, were still considered as drought.

Besides the work started last year, a certain amount of purely ecological work was undertaken. This was confined to sexing, weighing and recording of “joeys” and a little observational data on distribution.

MECHANICAL FACTORS

A machine was designed and built for easy manufacture of baits. This consisted of a 3-5 H.P. air-cooled petrol engine connected to a poultry mash mixer by means of V-belts. Through a hole in the bottom of this machine the moist bran and pollard mixture fell into the hopper of a worm-driven pellet-former, which had originally been manufactured for laying rabbit poison. From the extrusion hole in the end of the pellet former, pellets emerged at the rate of 140 per minute. Four different diameters of pellets were...
combined with three lengths giving a range of 12 different shapes and sizes. From this assortment of pellets the wallabies consistently chose those approximately 1 in. long and $\frac{3}{8}$ in. in diameter. The larger pellets were also consumed, but the 1 in. by $\frac{3}{8}$ in. were the most economically practicable. This pellet size was used in all later experiments.

MIXTURE PROPORTIONS

As a basis on which to commence work a mixture of 2 parts of pollard: 1 of bran: 1 of water (by volume) was chosen and used in all early experiments. Later experience prompted a change of the mixture to 1 part of pollard; 2 parts bran and 1 part of water.

This, which was subsequently termed the “soft” pellet—the original mixture being termed “hard”—proved much more satisfactory for the following reasons.

(i) Being softer, the wallaby had a better chance of consuming the pellet before tasting the poison.

(ii) The “soft” pellet dried more quickly with less internal fermentation. The “hard” pellet was apt to cake hard on the outside, leaving the inner portions moist and liable to fermentation.

(iii) The ideal bait should be one that crumbles readily under the conditions experienced in the “Wet.” Following tests in dropping from a standard height after exposure to humid conditions, the “soft” pellet mixture was adopted and used in all subsequent work.

The “hard” pellet, when exposed to humid conditions, became covered with moulds and flyblown but did not entirely disintegrate. (If hand-making of pellets is practised, the “hard” formula may be more suitable, but the “soft” mixture is definitely better if the pellets are machine-made.)

LURES

All the lures and supplements examined last year were again tested, with the addition of eucalyptus. In the quantities tried, aniseed, linseed oil, linseed meal and meatmeal were definitely repellant to wallabies, while dicalcic phosphate, rhodium, oil of cymini, amyl acetate, chaff and eucalyptus proved of no benefit in increasing consumption of baits.
Agricultural Development demands POWER

The modern farmer requires power in many forms, but most of all he requires reliable tractor-power. Skipper Bailey's are specialists in the field of modern farm tractors and are State Distributors for the famous range of OLIVER wheel and crawler tractors. Skipper Bailey's can supply you with the right tractor power whatever your needs, however, exacting your requirements. They have facilities for service and maintenance in Country and Metropolitan areas, including the most modern workshop plant and trained service personnel who are on call at all times. A fleet of service vehicles provides transport for our men to your machine, on the job. Stocks of Spare Parts provide for all normal demands. Spare Parts on request, will be sent to any part of the State by the quickest possible means.

Information on Oliver Tractors is readily available from Skipper Bailey's, Perth and Bunbury, and their Dealers throughout the State.
For Machinery Housing . . . always be sure it's a . . . UTILITY BUILDING

A PROPERTY ASSET
Suitable for—
- IMPLEMENTS
- SHEARING SHEDS
- WORKSHOPS
- GARAGES, ETC.

Utility Buildings have proved their sound value for every possible use. Their size and versatility solve every building problem. Designed to withstand any weather, they are a permanent guarantee as a property asset.

OPEN-FRONTED IMPLEMENT SHED
Steel Framework only, or complete with Timber, Sheeting, Ridge Cap and all Fixings

OPTIONAL 20ft. BAY especially for Harvester Protection

Branches at
ADELAIDE
MELBOURNE
SYDNEY
BRISBANE

it's GRIM BUSINESS!

ERADICATE THE RABBIT PEST!
WITH THE 100% KILL PHOSPHORUS POISON

Recommended by the Department of Agriculture and stocked by all Roads Boards throughout rural Western Australia.

Manufactured by FELTON GRIMWADE & BICKFORD PTY. LTD.
POISON REPELLENCY (STRYCHNINE)

As yet no really conclusive data is available regarding this point but some observations are worth recording.

It was noticed that when soft and hard pellets were laid side by side the hard pellets were always left after the soft had been consumed. This was possibly due to the longer period required to chew a hard bait and the subsequent bitterness that was detected by the animal. That, is the first important point. The second is that, when laid together, alkaloid pellets were usually preferred to those containing the soluble form of the poison. A small confirmatory test was laid out embracing both heavily and sparsely populated areas. The number of baits laid was only small but gave an indication that, where competition for food was great, then all baits, irrespective of taste, would be consumed, whereas in an area of relative food abundance, the alkaloid baits were preferred. As there is very little difference in price, it appears reasonable to recommend that the alkaloid (pure) be used in preference to soluble strychnine. When procurable, powdered strychnine is easier to handle than crystals and should always be used. It disperses much more easily and gives a more uniform bait. Mixing in the dry state, with the pollard, is a convenient way of achieving this result.

POISON REQUIREMENTS

Pen experiments were conducted at Quambun Station to find out the quantity of poison needed to kill this species of wallaby. (This is referred to as the Minimal Lethal Dose or M.L.D.). The method of doing this was to insert a length of metal tubing into the oesophagus of the animal and through the centre of this tubing to lower a piece of fine rubber tubing into the alimentary tract. A hypodermic syringe was then connected to the rubber tube and the requisite dose administered. All doses were regulated according to body weight. A summary of our findings was that (in round figures), the M.L.D. of strychnine was 0.8 milligrammes per pound body weight and the M.L.D. of "1080" was 0.2 mgms. per pound body weight.

Strychnine is the only one of these poisons at present available to the general public. To convert the above figures to a practical basis—
Mix 1 oz. of strychnine for every 1,720 pellets made. Each pellet then contains the lethal dose of $\frac{1}{4}$ gr. (calculated for an average animal of 20 lb. weight).

WHOLESALE POISONING

Several attempts were made at "wholesale" poisoning. Two of the more successful of which are documented here.

Ram Paddock, Quanbun Station.

In order to use up a lot of "free feed" (unpoisoned) pellets on hand, "hard" pellets were used in this experiment. Visual counts of wallabies were made from a vehicle when laying free feed pellets.

- **September 7**—382 wallabies counted, 10,000 free feed pellets laid.
- **September 10**—No count, 20,000 free feed pellets laid.
- **September 12**—523 wallabies counted, Nil.
- **September 15**—No count, 20,000 free feed pellets laid.
- **September 16**—377 wallabies counted, 3,000 poisoned baits and 5,000 free feed laid.

The poisoned pellets each contained $1\frac{1}{2}$ grains of soluble strychnine. The idea of laying "free feed" pellets out with the poisoned baits was merely to cut down on cost of strychnine which, with $\frac{1}{4}$ grains to the pellet amounted to an appreciable sum. The results of this trial are most interesting and illustrate some of the points mentioned before.

A lot of the "hard" poisoned pellets remained after eight days but none of the "free feed" pellets. A large percentage of the poison pellets had been nibbled and rejected. A wallaby count taken on September 19 showed 368 still in the area. The area was poisoned again on October 4 using "soft" $\frac{1}{4}$-grain alkaloid baits, and even though the animals had been partially educated against baits their numbers were further reduced to 43. In this experiment the following factors were unsuitable and the wallabies reacted accordingly:

(a) Hard and not soft pellets were used.

(b) Soluble and not alkaloid strychnine was used.

(c) The concentration of poison was too high (1$\frac{1}{2}$ grs. to the bait).
There's nothing to match a genuine Cyclone gate

FOR strength, long life and smooth-swinging service, you can't beat the "Cyclone" farm gate. For over 50 years "Cyclone" have concentrated on making better gates — all joints are electrically welded — the heavy top and bottom hinges cannot pull or work loose — the special chain and knob fastening cannot be knocked or lifted off by stock — the "Ringlock" covering makes the gate sheep-proof.

Look for the "Cyclone" RED TAG

Every genuine "Cyclone" gate carries the red tag illustrated at left. Demand the genuine, and make sure of a lifetime of trouble-free gate service.

Cyclone FIELD GATES
CYCLONE COMPANY OF AUSTRALIA LTD.
Gipps Street, Abbotsford
and at Sydney, Adelaide, Perth Brisbane

Please mention the "Journal of Agriculture, W.A.,” when writing to advertisers
GOLDSBROUGH MORT
AND COMPANY LIMITED
Perth and Branches and Agents Throughout the State

Stud Stock Sales annually at Royal Show and country centres. Fat Stock Sales at weekly metropolitan markets and regularly at country centres

Wool, Skin and Hide Brokers
Consign yours to Goldsbroughs for inclusion in the next sale. Best results. Prompt returns.

West Australian Farmlands for Sale
We have continuous and numerous inquiries for Grazing and Dairying Properties in all districts . . . Send full particulars if you wish to sell

Merchandise Department
A vast range of Merchandise for Farm or Station and Country Household use is available including Home Lighting Plants, Stationary Engines, Hot Water Systems, Kerosene-heated Coppers, 32-volt Electric Appliances, Shearing Requisites, "Hexagam" Sheep Dip, Rabbit Baits, "Sterno!" (British) Lubricating Oils, "Mag-o-tol" Blow-fly Repellant, "Top Form" Veterinary Remedies, "Phen-o-mort" for Worms in Stock, etc., etc.

Insurance
Agents for Western Assurance Company

Please mention the "Journal of Agriculture, W.A.," when writing to advertisers
Then, when conditions were made acceptable, the wallabies took the baits well and a big reduction followed. The total overall kill achieved during this trial was (calculated on the largest pre-poisoning figure) 95 per cent. Results of this magnitude are not generally expected using strychnine poison. This illustrates the control exerted on poison consumption by the amount of feed present at the time. (In this case practically no feed was available apart from the baits).

Alexander Island—Quantum Station.

A second trial was conducted on Alexander Island employing three free feeds—

October 14—396 wallabies counted, 25,000 free feed laid.
October 17—303 wallabies counted, 18,000 free feed laid.
October 19—235 wallabies counted, 20,000 free feed laid.

Five thousand poison baits of soft consistency, each containing $\frac{1}{4}$ grain alkaloid strychnine were laid on October 21. Counts made on successive days following this, showed a gradual decline—

October 22—74 (201 Carcasses counted from vehicle).
October 23—30.
October 24—17.

As far as could be ascertained, baits, which had been thrown from a moving vehicle at random, had all been consumed. These figures, when calculated on the largest pre-baiting count, illustrate a kill of over 95 per cent. It seems then that a satisfactory control does exist in the form of “soft” $\frac{1}{4}$-grain alkaloid strychnine baits. However, it is felt that further testing over a widespread area, involving varying numbers of free feeds is still necessary.

COST OF BAIT MAKING

Four hundred and twelve lb. of wet mash was made up by machine during one test period. This consisted of 152 lb. bran, 109 lb. pollard, 151 lb. of water (2:1:1 by volume). The machine was run for 3 hours, 11 minutes and made 12,300 baits.

- Cost of 152 lb. bran (ex Perth)=31.14s.
- Cost of 109 lb. pollard (ex Perth)=22.49s.
- Cartage to wharf Fremantle (10s. per ton)=1.17s.
- Handling charges (both ends)=3.46s.
- Freight (Fremantle to Derby)=12.00s.
- Cartage Derby to site (average £6 per ton)=14.04s.
- Labour=22.62s.
- Fuel for engine (3 hours 11 minutes)=1.2s.
- Depreciation on machine=2.71s.

Total Cost=110.85s.

=0.108d. per pellet

Cost of $\frac{1}{4}$ gr. strychnine per pellet =0.163d.

(13s. per oz.)

Total Cost per bait=0.272d.

It is hoped to continue this work in the coming season. The main programme will consist of wholesale baiting of extensive areas and thorough testing of the above finding from the point of view of practical application by the pastoralist.

KEEP YOUR JOURNALS

HERE at the production end, we are sparing neither expense nor effort in making the “Journal of Agriculture” a publication which will help you in your farming operations.

We suggest that the Journal is worth keeping and that a year’s issue will make an attractive and useful volume for your library—a volume that is full of sound factual information, attractively presented.

Arrangements have been made for the compilation of a comprehensive index to be incorporated in the December issue—a feature which will greatly enhance the value of the Journal as a work of reference.