Control of soursob (Oxalis pres-caprae) in cereals

J. R. Pierce
B. J. Rayner

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/rqmsplant
Part of the Agronomy and Crop Sciences Commons, Soil Science Commons, and the Weed Science Commons

Recommended Citation

This report is brought to you for free and open access by the Research Publications at Research Library. It has been accepted for inclusion in Experimental Summaries - Plant Research by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
Trial Title: Control of Soursob (Oxalis pes-caprae) in cereals.

Trial Number: 87NO107

Location: Jennapullen - K. McPherson

Soil Type: Red-Brown (Loam)

Blanket Treatments: Crop 60 kg Gamenya
120 kg plain super
30-40 kg urea pre-sowing
1.5 Litres Sprayseed/ha (7.5% diquat + 12.5% paraquat)
before seeding

Crop sown 16/5.

Ground Preparations:

Experimental Design:

Application Record:

Sprayed: 16.6.87

Time: 12.00-3.00 p.m.

Spray Vehicle: Tractor

Nozzle Type: 8001LP

Pressure (kPa): 200

Volume of Application (L/ha): 65

Speed of Spraying (km/hr): 9

Wind Speed (km/hr): -

Temp. Dry Bulb (°C): 21

Wet Bulb (°C): 16

Relative Humidity: 60

Soil Surface: Dry

At Depth: Damp

Stage of Crop:

Stage of Weeds:
Table 23. 87NO107 Soursob control in cereals (Post-emergence)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate/ha</th>
<th>Plants/m²</th>
<th>Sour/s</th>
<th>D/G</th>
<th>F.O'clock</th>
<th>Yield t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Glean</td>
<td>20 g</td>
<td>127</td>
<td>5.6</td>
<td>29.6</td>
<td>3.061</td>
<td></td>
</tr>
<tr>
<td>2 Ally</td>
<td>5 g</td>
<td>99</td>
<td>0.5</td>
<td>10.1</td>
<td>3.025</td>
<td></td>
</tr>
<tr>
<td>3 Ally</td>
<td>7.5 g</td>
<td>71</td>
<td>0.7</td>
<td>27.5</td>
<td>3.036</td>
<td></td>
</tr>
<tr>
<td>4 Ally</td>
<td>10.0 g</td>
<td>106</td>
<td>0.5</td>
<td>14</td>
<td>3.007</td>
<td></td>
</tr>
<tr>
<td>5 Ally + Isoproturon</td>
<td>5 g + 2 L</td>
<td>50</td>
<td>2.4</td>
<td>9.5</td>
<td>3.439</td>
<td></td>
</tr>
<tr>
<td>6 Glean + Isoproturon</td>
<td>10 g + 2 L</td>
<td>166</td>
<td>0.7</td>
<td>13.2</td>
<td>3.239</td>
<td></td>
</tr>
<tr>
<td>7 Isoproturon</td>
<td>2 L</td>
<td>169</td>
<td>0.3</td>
<td>9.1</td>
<td>3.207</td>
<td></td>
</tr>
<tr>
<td>8 Isoproturon</td>
<td>4 L</td>
<td>156</td>
<td>0.1</td>
<td>2.5</td>
<td>3.464</td>
<td></td>
</tr>
<tr>
<td>9 Logran</td>
<td>25 g</td>
<td>235</td>
<td>16.8</td>
<td>16</td>
<td>2.829</td>
<td></td>
</tr>
<tr>
<td>10 Logran</td>
<td>35 g</td>
<td>184</td>
<td>11.7</td>
<td>7.7</td>
<td>2.993</td>
<td></td>
</tr>
<tr>
<td>11 Logran</td>
<td>40 g</td>
<td>175</td>
<td>4.8</td>
<td>18</td>
<td>3.071</td>
<td></td>
</tr>
<tr>
<td>12 Starane</td>
<td>2 L</td>
<td>65</td>
<td>2.5</td>
<td>27.7</td>
<td>2.857</td>
<td></td>
</tr>
<tr>
<td>13 Logran + Isoproturon</td>
<td>30 g + 1 L</td>
<td>137</td>
<td>3.1</td>
<td>20.9</td>
<td>3.186</td>
<td></td>
</tr>
<tr>
<td>14 Nil</td>
<td></td>
<td>280</td>
<td>7.5</td>
<td>14.3</td>
<td>2.482</td>
<td></td>
</tr>
</tbody>
</table>

Sour/s = Soursob D/G = Doublegee F.O'clock = Four O'clock

Plant counts for soursob and Four O'clock will be more accurate when counts taken after the break of 1988 season to determine the bulb production from last season. Ally gave good control of doublegee. Isoproturon or mixtures with Isoproturon also gave good doublegee control. Logran & Glean were weak on doublegee.