1-1-1960

A useful farm-made roller

V E. Western

Follow this and additional works at: http://researchlibrary.agric.wa.gov.au/journal_agriculture4

Recommended Citation

Available at: http://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol1/iss3/16

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in *Journal of the Department of Agriculture, Western Australia, Series 4* by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
This Roller employing discarded truck tyres was made and used on the Denmark Research Station

A USEFUL FARM-MADE ROLLER

By V. WESTON, Manager, Denmark Research Station

A very serviceable compacting roller can be constructed at little expense by using discarded truck tyres. The roller described here has an overall width of 5 ft. 3 in. and carries seven 9.00 x 24 semi-trailer tyres which had been discarded when the treads were worn smooth.

Up to ten tyres could be used to give an effective width of 7 ft. 6 in. and for large areas rollers could be used in tandem or staggered formation.

The roller illustrated was designed for small farms with paddocks of only two or three acres in area. Wide rollers in such paddocks would be undesirable as they tend to drag when turning corners, resulting in uneven soil surfaces.

CONSTRUCTION

The first step is to make a wooden core to hold the tyres. Lengths of 4 in. x 2 in. jarrah are cut and checked out (half-jointed) to make three crosses as shown in the diagram.

The length of the arms of the crosses will be governed by the size of the tyres used. The 9.00 x 24 tyres give almost the ideal height, width and weight for the particular roller used on the Denmark Research Station. These tyres have an inside (bead to bead) diameter of approximately 24 in. so that the arms of the crosses are about 20 in. long to allow for the 2 in. thickness of the cross-stays, nailed or spiked to the ends of the arms. The core should be short enough to allow the inner surfaces of the tyres to press closely together when clamped.

Check tyre diameters carefully and make the core so that the tyres are a snug fit.

The next step is to make the metal end-clamps. These are also cross-shaped, made of any available flat iron or steel approximately 3 in. wide and $\frac{1}{2}$ in. thick. Old dray or cart tyres are ideal for the end-clamps and for the frame reinforcements described later.

Lengths are welded in the shape of a cross and a hole is cut in the centre to take a stub axle 1\$\frac{1}{2}$ in. in diameter and 14 in. long which is welded into position.

Fig. 1.—Front and back views of the roller showing frame construction
The stub axle projects 2 in. on the inside of the end-clamp, the centre of the wooden cross being bored out to take this projection. Holes are drilled in the end-clamps to coincide with similar holes in the wooden arms. Bolts through these holes hold the end-clamps and core firmly together.

The length of the arms of the end-clamps should be sufficient for them to project about four to five inches over the tyre walls.

ASSEMBLING

Bolt one end-clamp into position on the core, then stand the core on end with the end-clamp downward and force the tyres over the core. It will be found that the last tyre will project over the core and to fix the second end-clamp in position it will be necessary to use double-length bolts with long threads. Screwing down the nuts on these bolts will pull the end-clamp down into position and the projecting bolt-ends can then be cut off with a hacksaw or bolt-cutters.

THE MAIN FRAME

A simple rectangular frame is constructed from 5 in. x 3 in. hardwood securely braced with 3 in. x ½ in. metal at the corners. The drawbar is a 4 ft. length of 5 in. x 3 in. hardwood with a metal T-piece and angle-braces as shown in the photograph. The frame used in this roller...
was fitted with brass-lined 1½ in. bearings but, where suitable metal bearings are not available, hardwood blocks will give good service.

This roller has been used successfully at the Denmark Research Station consolidating a seed bed after ploughing and cultivation. Excellent germination was achieved with spring-sown lucerne and early summer-sown Sudan grass. On the lighter sandy soils better results were obtained by rolling before and after seeding.

Contour Banks at Mingeneu

How big is a contour bank? When new a contour bank is 18 to 21 inches high and this usually settles down to 9 to 12 inches. The bank is usually 6 to 8 feet wide at the base of the channel and the uphill side of the bank is a broad flat depression 8 to 15 feet wide. A contour bank can be any length to fit in with fence lines and natural depressions. Contour banks usually have a slight gradient increasing slightly towards the outlet end, gradients vary from level up to 4 inches in each 100 feet. Contour banks which help cure water erosion are usually 5 to 10 chains apart. Contour banks can be constructed by disc plough or road forming grader.
Wesfarmers recommend Sickle Dips Because . . .

ARSENIC-ROTENONE DIPS CAN STILL DO

SO MANY JOBS SO WELL . . .

AVOID BACTERIA,

KEEP ITCHMITE IN CHECK, TOO!

Far from being outmoded by the synthetic insecticides Rotenone-arsenic dips have a definite place in your dipping programme.

Your dipping bath keeps reasonably free of bacteria, thus minimising possible infection of your sheep. Another important point is that Sickle brand “Double Action” are free of smell. Sheep will not jib at the dip next year. “Double Action” powder dip and ready-to-use liquid “Paradip” contain rotenone and arsenic to give control of keds and lice, and suppress itchmite in the one dipping. They mix easily in hard or soft water and thoroughly penetrate the fleece.

SICKLE BRAND

"DOUBLE ACTION"

POWDER DIP — Moisture-proof
10-lb. packs. Each pack makes 110 gals. of wash.

"PARADIP"

LIQUID DIP — 4-gal. drum makes 1,000 gals. of wash. 1-gal. cans also available.

Manufactured by

COMMONWEALTH Fertilisers and Chemicals Ltd.

ORDER FROM YOUR LOCAL AGENT OR

Wesfarmers

569 Wellington Street, Perth. 21 0191.