Insect pests and their control - The Mediterranean fruit fly

C. F. H. Jenkins

D. G. Shedley

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3

Recommended Citation

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 3 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
Insect pests and their control - The Mediterranean fruit fly

Erratum

ERRATA In the May-June issue, page 342, the illustration (Fig. 2) was incorrectly captioned. It should read as follows:— Fig. 2.—1 and 2, Side and end views of larva of tomato fly (Lonchea splendida); 3 and 4, Side and end views of larva of Mediterranean fruit fly (Ceratitis capitata); 5, Pupa of Mediterranean fruit fly; 6, Larva of ferment fly (Drosophila sp).
THE MEDITERRANEAN FRUIT FLY

The Mediterranean fruit fly (Ceratitis capitata Wied) is without doubt the most serious insect pest with which West Australian orchardists have to contend. The creature has been known to science for nearly 140 years, and in that time has spread to almost every important fruitgrowing country in the world.

Experiments have shown that there is no more effective insecticide for use in fruit fly bait than sodium fluosilicate and that this bait when used correctly in conjunction with strict orchard hygiene can do much to reduce the ravages of this pest.

Regulations gazetted under the Plant Diseases Act make it compulsory to take action against fruit fly.

DISTRIBUTION

In this State the insect is known as far north as Carnarvon, where it was first found in 1934. The permanent home of the pest, however, may be regarded as that area of the State westward of a line running from Gingin south-eastwards to include Northam and York, and thence southwards to Balingup and Busselton. Casual outbreaks have occurred at Bridgetown, Albany, Mt. Barker, Kalgoorlie, Sandstone, and other outlying localities where it has failed to become established.

In the case of the southern fruitgrowing areas, failure is probably due to the stringent control measures adopted and relatively unfavourable climatic conditions, whereas in other districts the scarcity and lack of continuity of suitable host fruits accounts for its spasmodic appearances.

DESCRIPTION AND LIFE HISTORY

The Adults.

The Mediterranean fruit fly is a two-winged insect a little smaller than the house fly. The general colour is yellowish or light brown. The wings bear brownish bands and spots, and the abdomen has two light coloured rings. The pattern on the thorax or back consists of irregular white markings on a black background.
Fig. 2.—1 and 2, side and end views of larva of tomato fly (Lonchea splendida). 3 and 4 side and end views of larva of Mediterranean fruit fly (Ceratitis capitata); 5, Pupa of Mediterranean fruit fly (Drosophila sp.).

giving a mosaic appearance. In the sunlight this pattern often shows a metallic sheen. The wings are normally held in a drooping position and what appears to be a semi-spread position, and are never folded flat on the back as in the case of the house fly.

Mating and egg-laying does not take place in the young flies until they are about a week old. During this period the flies can be most successfully attacked, for like house flies these insects are fond of sweet liquids. They are unable to live longer than about four days without food and consequently if baiting is regularly carried out by all growers it would be possible to poison off many flies before they reach the egg-laying stage.

The female fruit fly seldom strays far from the protecting foliage of fruit trees and when suitable hosts are available a puncture is made in the skin of the ripe or ripening fruit and six to eight eggs are deposited in the cavity made.

The Eggs.

The eggs, which measure approximately 1/25th inch in length and are a creamy white colour, hatch in summer in from two to four days. In winter, however, the time required may be as long as 20 days.

The Larvae.

The tiny maggots, upon hatching, immediately commence feeding and burrowing into the fruit. This activity causes the tissue to break down, soft spots to form and in some instances the complete decomposition of the fruit. The maggot when fully grown is about 3/4 of an inch in length and creamy white in colour. In fact, it resembles very much in general appearance a house fly maggot or a undersized blowfly maggot.

The time spent in the fruit will vary according to the weather conditions and the type of fruit, but the period in summer is about 14 days and in winter sometimes as long as 45 days. One interesting feature about the fruit fly maggot is its ability to jump. When placed on a dry surface it can, by a sudden muscular action, skip to a distance of a foot or more, this is not however a characteristic of the fruit fly maggot alone for various fly larvae, including...
FARMERS!

NOW is the time to order your Hormone Weed-killers and Pest Control Chemicals to ensure clean crops, pest proof pastures and healthy flocks.

“K” 2, 4-D Amine or Ester formulations for the control of Wild Radish or Turnip in cereal crops.

“K” 20% D.D.T. Emulsion for Insect control.

“K” DIELDRIN controls Blow Fly Strike in sheep for up to 3 months.

“K” PHENOTHIAZINE controls many Worms in Sheep.

“K” Products are manufactured in Western Australia for Western Australian conditions

KWINANA CHEMICAL COMPANY

70 DAVIES CRESCENT, KALAMUNDA

P.O. BOX 49, KALAMUNDA ——— PHONE: KALAMUNDA 2426

Please mention the "Journal of Agriculture, W.A.," when writing to advertisers
Write to your stock firm or agent for full details of RIGITRUSS Shearing Sheds incorporating the newly designed and easily installed tubular penning and steel chutes.

For prompt advice and quotations contact the Manufacturers who will send a representative to call on you and discuss your problem.

MACHINERY SHEDS — SHEARING SHEDS — HAY SHEDS

You build better with RIGITRUSS

RIGITRUSS pays in so many ways!

Manufactured by
MILLS & HASSALL ENGINEERING CO. - OSBORNE PARK
BJ 1081 (3 lines)

Distributed by
Wesfarmers, Dalgetys, Elders, Goldsbroughs, Sandovers

Please mention the "Journal of Agriculture, W.A." when writing to advertisers.
"cheese jumpers" and the maggots of the tomato fly, possess this ability.

When fully developed, the maggot leaves the fruit, drops to the ground, if the fruit has not already fallen, and burrows into the soil.

The Pupae.

As soon as it burrows into the ground the maggot changes into a rounded barrel-shaped pupa looking not unlike a rather dark swollen grain of wheat. The pupal or resting stage varies from 12 to 50 days according to the time of year after which the fully developed fly emerges and forces its way up to the surface of the ground.

LIFE SPAN OF FRUIT FLY STAGES IN WESTERN AUSTRALIA

<table>
<thead>
<tr>
<th>Summer</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Fly</td>
<td>28-112 days</td>
</tr>
<tr>
<td>Egg</td>
<td>2-4 days</td>
</tr>
<tr>
<td>Larva</td>
<td>14-16 days</td>
</tr>
<tr>
<td>Pupa</td>
<td>12-14 days</td>
</tr>
</tbody>
</table>

FRUITS ATTACKED

Well over 100 fruits, nuts and vegetables have been recorded as hosts for the fly in different parts of the world. Many of these records have, however, been secured under artificial conditions and certain hosts are definitely more susceptible to attack than others.

In Western Australia the fly has been found attacking peaches, figs, apricots, pears, all citrus fruits, nectarines, apples, grapes, plums, persimmons, quinces, loquats, plantains, passion fruit, bananas, mulberries, olives, walnuts, tomatoes and the sapodilla. Such ornamentals as the guava, feijoa, pomegranate, clerodendron, lillypilly, chilli, rose, Irish strawberry, Barbados gooseberry, prickly pear, Osage orange and Natal plum, are also known hosts, and to complete the list must be added the following weeds: African box thorn, apple of Sodom, and black-berried nightshade.

An examination of this list will show that not a single native plant is included. The importance of this cannot be too fully emphasised, for it means that with the exception of relatively unimportant weeds, all the hosts of the fruit fly in Western Australia are cultivated plants. This simplifies, or should simplify, the problem of control very considerably. It means that if all growers were fully alive to their responsibilities the fruit fly menace could be, if not eradicated, so reduced as to be of little importance. In countries where native fruits harbour the pest the task is very different. There every care may be taken in the orchard only to be nullified by an invasion from bush or jungle, but in Western Australia a man can only blame either himself or his neighbour (of course it is usually the latter) for the presence of fruit fly in his orchard.

RELATIVE IMPORTANCE OF DIFFERENT HOST FRUITS

All host plants are, of course, not equally attractive to the fly or suitable for its development. In the passion fruit, for instance, fully-developed maggots have never been found in this State, although damage is caused by the disfiguring wart-like growths which arise on the skin following egg-laying. Maggots have been found working in pomegranates but no flies have been reared from such fruits. Although not normally regarded as a host when picked under commercial conditions, bananas have been found infested with fruit fly and adult flies have been bred from fruit infested in the field. Tomatoes, olives and walnuts were all found infested with fruit fly for the first time in Western Australia in 1955, and so far only a single record of each has been noted (Jenkins 1955). Development in lemons only occurs...
in very ripe fruit and normally then only when the skin has been split or broken. Many plums and grapes are apparently too watery to form suitable homes for the maggots. Peaches, apricots, pears and figs, on the other hand, are notorious breeders of the fly.

Although citrus growers suffer comparatively little loss from fruit fly, citrus are amongst the most important hosts of the pest. The reason for this is that when the summer soft fruits are finished the fly is able to carry over the winter in the citrus orchards. Grape-fruits are amongst the most susceptible varieties to infestation, but it is an interesting fact that only a low percentage of the eggs laid in citrus develop successfully. It is believed that the oil in the rind seals the egg cavity, or in some way interferes with normal hatching.

The attractiveness of oranges to the fly is amply exemplified by the number of punctures which may be seen on fruits in any infested orchards. These punctures are readily observed, for a discolouration of the surrounding skin results, and such marks are popularly known as “stings.”

Another host plant which must receive attention is the loquat. This fruit is very important because it serves as a link between the winter citrus and the early stone fruits, and the bigger build up of population there is in the loquats, the earlier will losses occur in apricots and other soft fruits.

POWERS OF REPRODUCTION

As an illustration of the great reproductive powers of this fruit pest, the following figure are illuminating. From one pair of flies laying on September 1, the possible progeny by the middle of January, a period of 4½ months, would amount to 6,750,000 flies. Such a calculation is based upon each female laying 300 eggs, 150 of which would produce female flies, and so on. Of course, this hypothetical reproduction never takes place in actual practice, but the potentialities are sufficient to make it clear to everyone that the pest is not one to be trifled with.

ECONOMIC IMPORTANCE

The financial loss to fruit growers in this State generally caused by the fruit fly each year is difficult to calculate; that
ALDRENE LIQUID SHEEP DIP
Contains Aldrin and gives lasting protection against Keds, Lice and Blowflies. Highly concentrated.

ROTALENE LIQUID SHEEP DIP
New formulation made to treat ITCHMITE, lice and keds in one dip. Non-poisonous, non-irritant. Can be used in spray or plunge dips.

GAMALENE LIQUID SHEEP DIP
Use in spray or plunge dips. Non-poisonous, non-irritant, treats lice and keds efficiently.

DOUBLE ACTION POWDER SHEEP DIP
Combination of Arsenic and Rotenone that treats lice and keds.

PARADIP LIQUID ARSENICAL SHEEP DIP
Treats lice and keds.

LIQUAPHENE DRENCH
The proven Phenothiazine drench that eliminates worms, prevents pasture reinfestation. Finely milled to C.S.I.R.O. standards for maximum efficiency.

MICROPHENE PHENOTHIAZINE POWDER
Micro fine! 99% of particles smaller than 25 Microns. Eliminates worms in sheep.

ALJET FLY STRIKE PREVENTIVE
Jet sheep with Aljet whenever humid conditions prevail. Gives lasting protection against fly strike.

DIELJET FLY STRIKE PREVENTIVE
Strongly absorbed into wool and protects against fly strike for long periods.

GAMAFLY DRESSING
Deadly against maggots and flies in crutch, poll and body strike.

Available from Branches, Co-ops. and Agents.

The Distributors for Western Australia:

WESTRALIAN FARMERS’ CO-OPERATIVE LTD.
569 Wellington Street, Perth.

Please mention the “Journal of Agriculture, W.A.” when writing to advertisers.
D.C. GENERATING SET

• LIGHT
• POWER
• Welding

The switchboard supplied will control all the operations and is fitted with master fuses and push button for starting the engine.

32 Volt, 1,500 Watt
(Generator only)
£65/-/-

Plus £32/10/-
For Switchboard

Can be supplied on cast iron base with petrol, diesel or kero. engine. Also available 32 volt 1,000 watt Lighting Set. Generator (R010) £45. Plus £18/10/- for Switchboard

Your OWN WATER SUPPLY for

FAN COOLED TOTALLY ENCLOSED MOTOR
A.C. 415/440 VOLT 3 PHASE, 50 CYCLE
1" 2 h.p. Pump will give up to 3,300 gallons per hour £49/10/- (no Sales Tax)
1¼" 3 h.p. Pump will give up to 4,100 gallons per hour £59 (no Sales Tax)
The Electric Pump, precision made in W.A. and supplied to all parts of Australia

A.E.C. MOBILE Direct Current WELDER
D.C. (D.C.W. TYPE). Type D.C.W. rated at 150 amps for continuous welding or intermittent welding at 200 amps. Speed 2,300/2,400 R.P.M. Welding accessories extra. £120. Mobile Trailer Unit £87/10/-. O.D.C. TYPE (HEAVY DUTY). Rated at 200 amps for continuous welding or intermittent welding at 240 amps. Speed 1,450/1,500 R.P.M. Welding accessories extra. £160. Mobile Trailer Unit £87/10/-

USE A.E.C.'s EXCHANGE REWIND SERVICE

USED BY W.A.'s MAJOR INDUSTRIES.

ELECTRIC MOTORS
(all sizes)
ARC WELDERS
ALTERNATORS
GENERATORS

SOLD BY LEADING DISTRIBUTORS

AUSTRALIAN ELECTRIC CO. PTY. LTD.
112-130 BENNETT ST., E. PERTH. BF 3926

Can be Hauled and Driven by your own tractor. Will also give 32 volt power and lighting.

Please mention the "Journal of Agriculture, W.A." when writing to advertisers
it is considerable none will deny. In addi-
tion to the actual value of the fruit lost
and the expense and labour of constantly
fighting the pest, the indirect loss caused
by the fact that the cultivation of certain
profitable crops is prevented or limited
must be borne in mind. When it is re-
membered that the average value of the
fruit industry to Western Australia is
several million pounds per annum, the
necessity for doing everything possible to
control the pest will be evident. Not only
must it be checked in areas where it is now
present, but its spread to clean districts
must be prevented.

CONTROL MEASURES

The first thing to be realised is, that for
really satisfactory results, concerted
action is necessary, both in the application
of bait sprays and in the regular and
thorough removal and destruction of in-
fested fruit. A few careless individuals in
a district can do much to nullify the work
of their neighbours and perhaps jeopardise
their livelihood.

BAITING

For many years trapping by means of
lures such as pollard and borax, “Clensel”
and “Beeco” solutions in glass jars and
tins was widely advocated, and when in-
tensively carried out was quite effective.
This method was later replaced by the use
of foliage baits (Newman and Jenkins
1936) which, besides being efficient, have
the advantage of being easily and rapidly
applied, especially where large areas need
treatment. Although various insecticides
including DDT, BHC, Parathion, HETP
(“Hexone”), dieldrin, aldrin and chlor-
dane have been tested for fruit fly control,
nothing has been found superior to sodium
fluosilicate when mixed in a sugar solu-
tion and applied to the foliage. (Ryan
1950) (Shedley 1954).

Bait Formula Recommended.

Sodium fluosilicate—1 oz.
White sugar—2½ lb.
Water—4 gallons.

One gallon is sufficient for 40 normal
sized trees or 100 vines.

For backyard gardens, a stock solution
can be made using:—
Sodium fluosilicate—1 teaspoonful.
Water—1 pint.

For use, thoroughly shake the mixture
and add six tablespoonfuls (3 ozs.) of the
stock solution and 3 tablespoonfuls of
sugar to one pint of water. This should
be sufficient for five or six trees.

Proprietary Mixtures.

In addition to the home-made bait,
there are certain proprietary mixtures
available, viz. “Luratox,” “Fluotox” and
“Lurafly” which comply with Depart-
mental recommendations.

How to Apply Bait.

In a large orchard or vineyard the use
of some type of spray pump fitted with a
coarse nozzle will usually be found the
most convenient way of applying the
spray. Where such expensive equipment
is not warranted, however, the bait can be
splashed on the foliage with a whitewash
brush or applied through a container with
a perforated lid such as a shaker topped
bottle.

When to Apply Bait.

The maximum period between treat-
ments should be six days, but, of course,
if heavy rain washes the bait off before
this time has elapsed, a second treatment
should be given. As the fruit fly frequently
attacks fruit before it is ripe baiting should
be commenced at least six weeks before the
crop is ready to pick and continued right
through the season until a couple of weeks
after the trees have been stripped, just to
make sure that any straggling flies are
not allowed to escape.

Warning.

In mixing and applying any of the
formulae the quantities stated should be
rigidly adhered to, thus reducing the
chance of any possible injury to the foliage
or harmful deposits of poison on the fruit.
Some people apply a complete cover spray
to their trees when baiting in the belief
that they are fulfilling requirements. The
object should be to have a quantity of
sticky bait here and there on two or more
sides of the tree, avoiding the fruit as
much as possible. Wandering flies will
then have a good opportunity of feeding.
Fig. 5.—Foliage bait spraying and picking up fallen fruit.

ORCHARD SANITATION AND DISPOSAL OF INFESTED FRUIT

Although foliage baiting is an important factor in fruit fly control, it can only hope to be really effective when carried out in conjunction with strict orchard sanitation. As the fruit becomes mature, it should be picked. Fruit left on the tree is a potential breeding ground for the pest which will develop rapidly in the ripe material. Infested fruit should never be allowed to lie on the ground, and should be disposed of by boiling, burning or soaking in water and kerosene. Burying is not recommended and when the life history of the pest is recalled the reason will be clear. The maggot naturally burrows into the soil to pupate, so that by burying maggoty fruit the flies' normal development is only being assisted. Certainly, if the fruit is buried deeply enough no insects can emerge, but when it is remembered that fruit flies have successfully pushed their way through four feet of dry sand the weakness of this method is obvious. It has been found that infested fruit placed in a pit and liberally treated with BHC dust before filling in will prevent fruit fly development (Ryan 1950). This technique may be of value where disposal of large quantities of infested fruit is necessary and where other means of disposal would be too difficult.

In order to simplify the work of sanitation, growers, and this especially applies to backyard growers, are advised not to let their trees attain such proportions that the fruit cannot be easily reached. Special attention should be paid to fig trees and loquats, for often these are neglected and allowed to carry far more fruit than can possibly be used. Such trees should be cut back to a height of say 10 feet so that they can be baited easily and so that the fruit can be conveniently picked. When allowed to grow unchecked they become a menace to neighbours and perhaps to the owner when the Fruit Fly Inspector calls.

Where individual trees are found to be heavily infested, besides baiting the foliage and destroying the fruit, the surface of the ground under the tree may be dusted with BHC which should then be worked into the surface layer of the soil. For this purpose 100 lb. of 10 per cent. BHC per acre or 1 oz. per 3 square yards, (1¼ lb. of lindane per acre), is recommended. This will help greatly in preventing flies from emerging from pupae already in the ground.
Every grower should aim at getting good clean fruit from his trees, and if this cannot be realised he will be doing a public service by removing them.

LEGISLATION

To aid in the control of fruit fly, it has been found necessary to introduce certain regulations including the compulsory baiting in certain areas and the restriction of movement of fruit within the State.

Registration.

All fruit trees must be registered annually with the Department of Agriculture and a registration fee paid. The details supplied enable Inspectors to check on the most susceptible types of fruit at various seasons of the year and to advise on control measures where these are not being carried out efficiently.

Compulsory Baiting.

Where fruit fly occurs it is compulsory to carry out control measures including the application of the bait recommended in this article and the regular gathering of fallen fruit.

In districts where more than 60 per cent. of the growers voting in a poll agree, the baiting may be carried out on a community basis.

Movement of Fruit.

The main fruit growing districts of the State have been divided into three areas. District 1, which includes the Metropolitan Area, the coastal plain as far south as Cookernup and the associated hills districts, is considered to be regularly infested and fruit movement from this area is restricted. District No. 3 which embraces that part of the State south of Katanning and Kirup is considered normally to be free of fruit fly and movement of fruit into this area is restricted. Area No. 2, which is the zone between areas 1 and 3, has certain restrictions limiting both the inward and outward movement of fruit.

Further details concerning these Regulations can be obtained by referring to the relevant portions of the Plant Diseases Act, copies of which are available on application from the Department of Agriculture.

SUMMARY OF CONTROL MEASURES

(1) Prune trees to a manageable size.
(2) Bait regularly using sodium fluosilicate foliage bait.
(3) Pick fruit as it ripens.
(4) Destroy properly all infested fruit.

REFERENCES

350,000 miles
with a
K5 INTERNATIONAL

2 sets (only) of CORDS PISTON RINGS USED
New running on 3rd set of CORDS and no sign
of rebore necessary

CORDS RINGS
are available for
Cars, Trucks,
Tractors and
Stationary Engines

OPEN SATURDAY MORNINGS — Write or phone for FREE Literature

DAIRY FARMERS
RUAKURA

Now Available
Vacuum
Regulators

Milk Flow Indicators and Dairy Cleansers as developed by the Ruakura (N.Z.) Research Station

Also the New RUAKURA Type

Imperial “Master” MILKERS

Write for full particulars and prices, &c. Purchasers desirous of using Ruakura Equipment will find that every care has been taken in making simple but highly effective provision for the use of this equipment with all types of IMPERIAL MILKERS.

For Converting Existing Milkers
Special Milk Connection and Bracket for mounting Milk Flow Indicator available in both 1¼ in. and 1½ in. fittings, also Adaptor Plugs for Vacuum Regulators.

Ruakura Vacuum Regulator 85/-
Adaptor Plug with Tube, 1¼ in. and 1½ in. 3/6
Ruakura Milk Flow Indicator 45/-
Conversion set consisting of special Milk Connection, Bracket and Rubber Tubes, per set 43/3

“RUAKURA Type

“RUA-KLENZA”
Alkali and Acid Detergents
(Made to Ruakura B1 Specifications)
13 lb. Duo-Pack includes alkali and acid for 750 gal. washing solution, 52/-
3 lb. Sample Pack, approx. 180 gal., 16/8
Full Particulars on Application

A. H. McDONALD & CO.
38-42 Monger Street, Perth
and at Melbourne, Sydney, Brisbane, Adelaide

Please mention the “Journal of Agriculture, W.A.,” when writing to advertisers