Insect pests: snails and slugs

Clee Francis Howard Jenkins

1-1-1960

Follow this and additional works at: http://researchlibrary.agric.wa.gov.au/journal_agriculture4

Recommended Citation

Available at: http://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol1/iss7/11
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA’s research library website, DAFWA’s main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA’s research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
While snails and slugs are not insects, they have been included in this series of articles, because the damage they cause is very similar to that caused by insect pests—and furthermore, the task of testing and recommending control measures is usually left to the entomologists.

The commonest species of snails in this State are the Brown or English snail (*Helix aspersa* (Müller)) and the White or Italian snail (*Theba pisana* (Müller)).

Two other introduced species which may also be found associated with cultivated plants are the Dune snail (*Cochlicella acuta*) and the Cellar snail (*Helicella cellaria*). The Dune snail is a small sharply-spired species with habits somewhat similar to the White snail but it is much less common and up to the present has proved of little economic importance. The Cellar snail looks somewhat like a very small and delicately-shelled Brown snail. It is found in lawns, sheltered situations and sometimes occurs on greenhouse plants but the damage done is seldom serious.

Slugs may be roughly described as snails without shells and as the habits and control measures described for snails will apply in the main essentials to slugs, they need receive no further mention.

The Brown snail reached this country many years ago, and is now practically world-wide in its distribution. The first record for Australia came from New South Wales in 1888, but the exact date of its arrival in Western Australia is not known. The White snail is a later arrival in this State and is believed to have been transported in ships' ballast from South Africa, where it is a well-known pest. Bunbury and Albany contend for the doubtful honour of being the first site where this snail was established locally. Its distribution at present is essentially coastal, and in situations where it is firmly established it far outnumbers the larger brown snail. So alarming was the rate of increase of this snail in portions of California that an extermination campaign was undertaken in 1922 and the results were eminently successful.

Fig. 1—Brown or English snail (natural size)
The Brown snail is the larger of the two species, the full-grown shell being formed of from four to four and a half whorls or coils and measuring an inch or more in diameter. The shell of the White snail may attain a diameter of from a half to three-quarters of an inch.

The food of the small snail consists both of living plants and dead or decayed vegetation, and they also show cannibalistic tendencies if any of their squashed brethren are available. The snail has no true jaws, but rasps its food by means of a tongue-like structure or radula covered with teeth like a file, the suitability of which for disposing of vegetable material few gardeners will question.

HABITS

The nocturnal habits of the Brown snails are well-known to all who have surveyed with dismay their surviving seedlings on "the morning after the night before." The White snail is not so retiring in its habits and may be found feeding in the daytime.

The liking of snails for moisture and shelter is also general knowledge, and should be remembered when attempting control measures. Masses of weeds and tangles of creepers against walls and fences often provide harbourage for snails.

During adverse weather conditions, either dry or cold, the snail becomes inactive and seals off the entrance of its shell with a kind of diaphragm. Under our summer conditions this prevents excessive loss of moisture and enables the creature to survive even when exposed in clusters on twigs and fences.

When this feature of the snails' habits is remembered there need be no astonishment at the sudden appearance, apparently from nowhere, of armies of snails immediately following the first autumn rains.

Experiments in South Africa showed that out of 50 snails of both species collected in January, 1919, and placed in jars of soil without food or artificial moisture six Brown and three White snails revived and fed on cabbage leaves at the end of March, 1921. That is after a dormant period of over two years.

When the shell of the snail becomes injured it can be repaired to a remarkable degree. New shell will be built over the places where sections have become detached, but the original markings are not reproduced, so that the repair work will always remain apparent.

At this stage perhaps it is appropriate to mention that, contrary to a rather popular belief, when a snail has been thoroughly squashed it is not able to survive, neither can any eggs it may contain continue to develop.

LIFE HISTORY

There is no differentiation of the sexes in snails, as each individual possesses the male and female organs, and so may be referred to as an hermaphrodite. During mating, mutual fertilisation takes place and both individuals may lay eggs. A suitable spot is selected in a damp, sheltered situation, and a hole about an inch or more in depth is dug. The eggs are coated with a slimy mucilage which causes them to cling together and swell when moistened. A single snail may lay a number of times and produce several hundred eggs. On hatching, the young snails are furnished with tiny white shells, and feed gregariously for some time, but when a few months old they lead a more individualistic life. The period required for the eggs to hatch is about a fortnight under good conditions, but this period may be greatly increased by dryness or excessive cold. The rate of growth is relatively slow, for it takes over a year for the full size to be reached.
CONTROL

Baits.—Metaldehyde mixed with bran has proved one of the most effective slug and snail baits yet devised. The poison may be obtained as a powder and sometimes also in the form of tablets sold under the name of “meta” fuel and used in “tommy’s cookers.” Calcium arsenate or BHC is frequently recommended as an addition to snail bait to ensure that no individuals recover from the paralysing effect of the metaldehyde.

The recommended formulas are:

Small Quantity

- Metaldehyde ½ oz.
- Bran or Pollard 1 lb.
- Calcium Arsenate 1 oz.
 or
- 10 per cent. B.H.C. (Benzene-hexachloride) ½ oz.

Large Quantity

- Metaldehyde 1 lb.
- Bran or Pollard 30 lb.
- Calcium Arsenate 2 lb.
 or
- 10 per cent. B.H.C. 1 lb.

Cement Blocks.

In addition to the normal type of snail bait one of a much more permanent nature has recently been developed. The constituents are as follows:

- Metaldehyde powder—1 part by volume
- Rice bran—3 parts by volume
- Hydrated lime—1 part by volume
- Cement—3 parts by volume

These ingredients should be mixed dry and water added to make a thick creamy mash and then allowed to set thoroughly in a shallow pan. Break up into blocks about 2 in. square by about ⅛ in. thick and place where snails appear in the early evening. If rice bran is not available, poultry mash may be substituted with good results.

The cement blocks should be collected up when weather conditions are unsuitable for snail activity and re-distributed. If the blocks are left out permanently during the winter they should be placed in small flower pots or tins and placed on their sides to protect the bait from heavy rains.

The baits should be thoroughly mixed and may be broadcast over the affected area or placed in small heaps near plants to be protected. The metaldehyde may burn some foliage and should not be
liberally sprinkled on young seedlings. The addition of a small quantity of water to bran baits is sometimes adopted, but would be undesirable in pollard mixtures.

Where metaldehyde cannot be procured, the use of baits containing bran and calcium arsenate or even Paris green will give helpful results. The addition of two tablespoonsful of honey or treacle to the pound of bran is recommended, and a small quantity of water should also be added to make a free crumbling mash.

In dry weather the garden should be thoroughly watered early in the evening before any bait is distributed. This will stimulate snail activity and greatly improve the kill.

Dusts.

Slaked lime is widely recommended for use against snails and slugs, but its efficiency leaves much to be desired. The addition of powdered copper sulphate (bluestone) or copper carbonate to the lime, however, makes a very toxic dust. This cannot be recommended for the actual treatment of plants, but where a plot of ground is endangered by invasions
of snails from adjacent breeding grounds, a barrier of lime and copper dust will be found invaluable. Should the creatures succeed in crossing the barrier they will succumb very rapidly. The formula recommended is:—Copper sulphate or copper carbonate, 1 part; slaked lime, 12 parts. The efficiency of this mixture unfortunately deteriorates once the dust has become caked from wetting.

Sprays.

Copper sprays are particularly toxic to slugs and snails but as they may also burn plant foliage their use in a crude form can only be recommended on non-cultivated areas.

Bordeaux mixture on the other hand can be safely applied to most plants and a mixture widely favoured is 4 lb. of lime, 4 lb. of bluestone and 50 gallons of water. The addition of 1 gallon of white spraying oil and ½ pint of Black Leaf 40 or Nicotine Sulphate to the above mixture will increase the efficiency of the spray where quick results are required.

Home gardeners wishing to try sprays may, of course, make proportional reductions to the above amounts recommended for commercial growers.

Cultural Methods.

The importance of clean cultural methods cannot be over-emphasised in the control of slugs and snails. Weed growth, hedges and accumulations of litter are favourable to snail activity and should be dealt with appropriately.

In the case of the White snail particularly, action during the summer may considerably lessen the damage to be experienced the following winter. The fact that the snails cluster on grass, weeds and shrubs during the dry months renders them very susceptible to fire and judicious burning off in paddocks and along roadsides may almost eliminate the danger of invasions when autumn rains commence. Where wholesale burning is not possible a break between “snail country” and cultivated plants should be made either by burning or cultivating. This will establish a bare strip over which the invading snails must pass and one which may be periodically treated with bait or spray whenever snail activity is noted.

MURESK AGRICULTURAL COLLEGE

(Department of Agriculture)

Parents are reminded that applications for 1962 admission to Muresk Agricultural College close on December 31 of this year. A preliminary selection of 1962 entrants is made after the Junior results are available early in 1961.

The successful applicants then continue with Sub-Leaving, or higher studies, in 1961.

Before the course can be commenced students must have attained:—

(a) Sub-Leaving Standard in English, Maths. A, Chemistry and Physics (including Magnetism and Electricity).

(b) Junior Standard Bookkeeping.

Should places still exist for 1962 commencement after the preliminary selection early in 1961, they are filled in order of application during 1961, by qualified applicants.

Duration of Course.—Two years.

Fees.—Approximately £180 per annum covering full residential charges.

Scholarships.—Department of Agriculture (3), the “Countryman,” and J. J. Poynton Memorial (2).

Boarding Allowance.—Most Muresk students are eligible for the Education Department Boarding Allowance (£50 per annum).

Full details of the College are obtainable from the Principal, Muresk Agricultural College, Muresk, W.A., or the Department of Agriculture, Perth.
LIFTING JACKS FOR EVERY PURPOSE
by
TREWHELLA
Bros. Pty. Ltd.
TRENTHAM, VICTORIA

6 Tons Capacity Rack and Pinion Jack.
35 Tons Capacity Ball Bearing Screw Jack (Short Lift), also Other Types and Sizes.
30 Tons Capacity Ball Bearing Screw Jack. 15 Inch Rise.

Available from
McLean Bros. & Rigg
Harris Scarfe & Sandovers Ltd.

McPhersons Ltd.
J. & W. Bateman Ltd.
Co-operative Wholesale Services Ltd.

SULPHATE OF AMMONIA

The World's Most Popular Nitrogenous Fertilizer — is IDEAL for use "straight," or in well-balanced mixed fertilizers for all crops. It is entirely safe and its continued and increasing use over a long period in Australia, has made

SULPHATE OF AMMONIA

a powerful influence towards MORE PROFITABLE primary production.

SULPHATE OF AMMONIA

is made in Australia, and is distributed by all major fertilizer companies or their agents.

Use "straight" SULPHATE OF AMMONIA with confidence, and see that all mixed fertilizers you buy contain adequate nitrogen as Sulphate of Ammonia.

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.