5-1957

Insect pests and their control - Tobacco pests - Experiments in their control in Western Australia

B.A. B. Edwards

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3/vol6/iss3/7

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 3 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
Experiments In Their Control In Western Australia

Experiments have been conducted at Manjimup, Western Australia, for the control of insects attacking tobacco. The insects concerned include the leaf miner, stem borer, cutworms, looper caterpillars and grass hoppers.* The insecticides used were lead arsenate, DDT, dieldrin, aldrin and endrin. As applied, i.e., at equal intervals during the growing season and at the strengths used, DDT proved superior to all other treatments.

Of the insects which attack tobacco after planting out, the present article deals with two particular types, the leaf miner and leaf chewing insects. The latter includes cutworms, looper caterpillars and, to a lesser degree, grasshoppers.

Until the advent of DDT, control measures were carried out with arsenical dusts and baits (Newman 1931) but in recent years DDT has been found more effective either as a spray or as a dust (Cannon, 1946). Interest also arose in the chlorinated hydrocarbons, aldrin, dieldrin, and endrin, for tobacco pest control.

I. Treatments.
The following treatments were decided on after a survey of the literature:

(i) Control—no treatment.
(ii) 50 per cent. lead arsenate dust—5 applications.
(iii) 50 per cent. lead arsenate dust—3 applications.
(iv) 2 per cent. DDT dust—5 applications.
(v) 2 per cent. DDT dust—3 applications.
(vi) 0.1 per cent. DDT spray—5 applications.
(vii) 0.1 per cent. DDT spray—3 applications.

II. Site.
The site selected was on the Department of Agriculture’s Tobacco Research Station located six miles west of Manjimup, Western Australia.

* The scientific names of pests are listed at the end of the paper.
III. Design.

A randomised block design with five replications of the seven treatments was used. Each plot consisted of five rows of tobacco plants each one chain long and containing approximately 33 plants in every row.

The variety used in all experiments in the present paper was Hickory.

IV. Application.

The seedlings were planted out on November 4, 1952, and the interval between this date and the end of February, 1953 (approximately the end of harvesting) was divided into five or three periods as required for each treatment.

Dusts were applied by means of a hand rotary duster and sprays with a knapsack spray pump.

The amounts of both dusts and sprays used varied considerably, according to the age of the plants. The amounts of 50 per cent. lead arsenate dust varied between $\frac{1}{2}$ to 2 lb. per treatment, 2 per cent. DDT dust from $\frac{1}{2}$ to 3$\frac{1}{2}$ lb. per treatment and 0.1 per cent. DDT spray from 3 to 5 gals. per treatment.

V. Sampling.

This was carried out by examining all the leaves picked from the middle 20 plants of the middle row in each plot. Leaf miner damage was assessed by counting the number of leaf mines in each leaf. At the same time, chewing damage was estimated by placing the leaf into one of two classes—undamaged or slightly damaged and badly damaged.

VI. Results.

(1) Leaf miner damage (Table I).

The tabulated figures are the total number of leaf mines found in all the leaves from the 20 plants in each plot.

An analysis of variance was performed on the data. Since different numbers of leaves were taken from each plot, the variate used was the number of mines per leaf on a plot basis.

Examination of the results allows the following conclusions:

(a) All the treatments were significantly better than the control.

(b) Treatment 4 (five applications of 2 per cent. DDT dust) was significantly better than both Treatments 2 and 3 (three and five applications of 50 per cent. lead arsenate dust), but Treatment 5 (three applications of 2 per cent. DDT dust) did not show significance from these treatments.

(c) Treatments 6 and 7 (0.1 per cent. DDT spray) were significantly better than Treatments 2 and 3 (lead arsenate dusts).

<table>
<thead>
<tr>
<th>TABLE I.—LEAF MINES.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments.</td>
</tr>
<tr>
<td>1. Control.</td>
</tr>
<tr>
<td>Block A</td>
</tr>
<tr>
<td>Block B</td>
</tr>
<tr>
<td>Block C</td>
</tr>
<tr>
<td>Block D</td>
</tr>
<tr>
<td>Block E</td>
</tr>
<tr>
<td>Total all Blocks</td>
</tr>
<tr>
<td>Leaf mines per leaf</td>
</tr>
<tr>
<td>Treatment Totals Leaf mines/leaf</td>
</tr>
</tbody>
</table>

Least significant differences between 2 treatment totals.

At 5% level—2.9056
1% level—3.9494
0-1% level—5.2894
PRIMARY PRODUCERS!
Railway wagons are YOUR ASSETS
DON’T WASTE THEM

PROMPT LOADING and UNLOADING means quicker turnaround of wagons.
QUICKER TURNAROUND means increased effective wagon loading capacity.
INCREASED CAPACITY means faster and better railway service for all.

BETTER SERVICE is our aim and your need. YOU CAN HELP yourself by helping Railways to keep the wagons moving.

- USE Government Railways Insured Parcels and Cash on Delivery Parcels systems
- ALSO, consign your goods at “Commission’s Risk” and safeguard yourself

WESTERN AUSTRALIAN GOVERNMENT RAILWAYS

INVEST IN THE WEST

20% DDT Emulsion sprays for
50% Malathion orchard and farm.

DIMAL .. Standard control for lucerne flea and red
(DDT with Malathion) mite.

24D .. Hormone weedkiller for
control of radish, turnip,
cape tulip, etc.

245T for blackberry treatment.
Syndet Synthetic detergent.
Cetanol Evaporation controller.

P.O. BOX 49, KALAMUNDA

Please mention the “Journal of Agriculture, W.A.,” when writing to advertisers
It's a pleasure to
'lose your wool' with

Cyclone

SHEARING SHED
EQUIPMENT

ROLLING TABLES
Specially constructed — with folding legs — for the laying out of wool quickly and easily, at a convenient height. Size 8 ft. long by 4 ft. 6 ins. wide, by 3 ft. high.

STRETCHERS
Designed to give comfortable rest, yet last a lifetime. Especially suitable for station or farm sleeping quarters. Size 6 ft. 6 ins. long by 2 ft. 6 ins. wide, and 1 ft. 6 ins. high. Legs can be folded for easy storing.

PARTITIONS
Strong, with a durability that will last almost forever. Protects your wool, whilst giving good visibility for working. For use in shearing sheds, factories and warehouses.

WOOL BASKETS
Ideal when classing wool into different grades in shearing sheds or warehouses. Available in various sizes, with or without casters or skids.

CYCLONE COMPANY OF AUSTRALIA LTD.
C/r. Brown and Lime Sts., East Perth. Phone BF 1454
and at Melbourne, Sydney, Adelaide, Brisbane, Townsville

MAKERS OF THE FAMOUS "CYCLONE" GATES AND "RINGLOCK" FENCES

Please mention the "Journal of Agriculture, W.A.,” when writing to advertisers
(d) Treatment 6 (five applications of 0.1 per cent. DDT spray) was significantly better than Treatment 5 (three applications of 2 per cent. DDT dust). No significant difference was shown between the other DDT treatments.

(ii) Chewing damage (Table II).

These results give the percentage of undamaged or slightly damaged leaves for each treatment. The treatments are tabulated in order of merit.

TABLE II.—CHEWING DAMAGE.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Number of Leaves</th>
<th>Undamaged or Slightly Damaged</th>
<th>Per cent. Undamaged or Slightly Damaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1,638</td>
<td>1,542</td>
<td>94-1</td>
</tr>
<tr>
<td>4</td>
<td>1,433</td>
<td>1,323</td>
<td>92-3</td>
</tr>
<tr>
<td>7</td>
<td>1,430</td>
<td>1,290</td>
<td>90-2</td>
</tr>
<tr>
<td>5</td>
<td>1,236</td>
<td>1,085</td>
<td>87-8</td>
</tr>
<tr>
<td>2</td>
<td>1,027</td>
<td>867</td>
<td>84-4</td>
</tr>
<tr>
<td>3</td>
<td>1,151</td>
<td>943</td>
<td>81-9</td>
</tr>
<tr>
<td>1</td>
<td>1,032</td>
<td>766</td>
<td>74-2</td>
</tr>
</tbody>
</table>

The differences in these percentages were tested firstly as a whole and then as individual comparisons using a chi-square analysis. The separate comparisons revealed a marked heterogeneity (see significant levels given in Table III).

The following conclusions can be made from the analysis:

(a) All treatments were significantly better than the control.

(b) The DDT treatments (Treatments 4, 5, 6, and 7) were all significantly better than the lead arsenate treatments (Treatments 2 and 3).

(c) Treatment 6 (five applications of 0.1 per cent. DDT spray) was the best treatment followed by Treatment 4 (five applications of 2 per cent. DDT dust).

TABLE III.—CHEWING DAMAGE.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>5</th>
<th>7</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>n.s.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

n.s. = no significance.

x = significant at 5% level.

xxx = significant at 0.1% level.

VII. Discussion.

(i) Leaf miner damage.

From the results of this experiment, it can be seen that damage due to the leaf miner can be best controlled by the use of DDT either as a 2 per cent. dust or as a 0.1 per cent. spray. In all cases, DDT proved superior to the old method of control, namely the use of lead arsenate dust.
(ii) Chewing damage.

DDT was also proved to be superior for the control of chewing insects on tobacco in this experiment. The larger number of applications (5) of either DDT dust or 0.1 per cent. DDT spray was superior to the applications in each case.

(iii) The experiment as a whole.

The results from this experiment indicate that at the concentrations used, DDT either as a spray or as a dust is superior to lead arsenate dust to control insects damaging tobacco leaves in the field.

Thorough application of all treatments is most important and 3 to 5 gals. of spray were used to cover approximately 650 plants (19-32 gals./acre). With dusts, $\frac{1}{2}$ to 3½ lb. were used (3-22 lb./acre), the amounts with either formulation varying with the size and development of the plants in each individual treatment.

EXPERIMENT 1953-54

Due to reports of the effectiveness of dieldrin against looper caterpillars on tobacco (Smith, 1953), and its known toxicity to grasshoppers, an experiment was begun during this season to compare dieldrin and the related compound aldrin with DDT. All three compounds were used in the form of sprays. Unfortunately, half way through the season, the site was converted to a dam and the experiment was abandoned.

EXPERIMENT 1954-55

The preceding season's experiment was repeated and, in addition, the promising new insecticide, endrin, was used. This material had been reported as effective against most tobacco pests (Smith, 1954). All three insecticides were compared with DDT against both the leaf miner and against leaf chewing insects.

I. Treatments.

From a survey of the literature, the following treatments were decided upon:

(i) Control—no treatment.
(ii) 0.1 per cent. DDT.
(iii) 0.5 per cent. aldrin.
(iv) 0.1 per cent. aldrin.
(v) 0.05 per cent. dieldrin.
(vi) 0.1 per cent. dieldrin.
(vii) 0.05 per cent. endrin.
(viii) 0.1 per cent. endrin.

Experimental samples of aldrin, dieldrin and endrin were obtained from Shell Chemicals (Aust.).

All treatments were applied four times during the growing season—the first a week after planting out and the remainder at approximately monthly intervals.

II. Site.

As in the previous experiments, the site was at the Tobacco Research Station, Manjimup.

III. Design.

A randomised block design with four replications of eight treatments was used with plot sizes similar to those used in previous work.

IV. Application.

All treatments were applied with a knapsack spray pump. The amount of spray used varied from 2 to 4 gals. per treatment (16 to 48 gals. per acre).
TABLE IV.—LEAF MINES.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>(0.1%) DDT</th>
<th>(0.05%) Aldrin</th>
<th>(0.1%) Dieldrin</th>
<th>(0.05%) Endrin</th>
<th>(0.1%) Dieldrin</th>
<th>(0.05%) Aldrin</th>
<th>(0.1%) Endrin</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 0.1% DDT</td>
<td>323 622 301 134</td>
<td>318 180 251 159</td>
<td>294 171 255 157</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
</tr>
<tr>
<td>3. 0.05% Aldrin</td>
<td>182 478 333 83</td>
<td>232 136 237 106</td>
<td>255 165 235 125</td>
<td>242 109 221 120</td>
<td>242 109 221 120</td>
<td>242 109 221 120</td>
<td>242 109 221 120</td>
</tr>
<tr>
<td>4. 0.1% Dieldrin</td>
<td>228 253 230 255</td>
<td>224 358 234 186</td>
<td>228 453 221 120</td>
</tr>
<tr>
<td>5. 0.05% Dieldrin</td>
<td>300 114 301 134</td>
<td>318 180 251 159</td>
<td>294 171 255 165</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
</tr>
<tr>
<td>6. 0.1% Dieldrin</td>
<td>300 114 301 134</td>
<td>318 180 251 159</td>
<td>294 171 255 157</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
<td>227 120 206 120</td>
</tr>
<tr>
<td>7. 0.05% Aldrin</td>
<td>163 404 153 212</td>
<td>228 294 273 173</td>
<td>273 173 161 137</td>
<td>231 101 198 198</td>
<td>231 101 198 198</td>
<td>231 101 198 198</td>
<td>231 101 198 198</td>
</tr>
<tr>
<td>8. 0.1% Endrin</td>
<td>967 176 1000 1083</td>
<td>967 176 1000 1083</td>
<td>1000 1083 161 137</td>
<td>198 198 198 198</td>
<td>198 198 198 198</td>
<td>198 198 198 198</td>
<td>198 198 198 198</td>
</tr>
</tbody>
</table>

V. Sampling.

Sampling and the assessment of results were carried out in a similar manner to the previous experiments.

VI. Results.

(i) Leaf miner damage—Table IV.

While all treatments were significantly better than the control, there was no significant difference between individual treatments.

(ii) Chewing damage—Table V.

The results of individual comparisons between the treatments using a chi-square analysis are shown in Table VI.

TABLE V.—CHEWING DAMAGE.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Number of Leaves</th>
<th>Undamaged or Slightly Damaged</th>
<th>Per cent. Undamaged or Slightly Damaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,194</td>
<td>1,076</td>
<td>90.4</td>
</tr>
<tr>
<td>2</td>
<td>967</td>
<td>819</td>
<td>84.9</td>
</tr>
<tr>
<td>3</td>
<td>875</td>
<td>676</td>
<td>77.4</td>
</tr>
<tr>
<td>4</td>
<td>1,000</td>
<td>771</td>
<td>77.2</td>
</tr>
<tr>
<td>5</td>
<td>814</td>
<td>629</td>
<td>77.0</td>
</tr>
<tr>
<td>6</td>
<td>937</td>
<td>705</td>
<td>75.6</td>
</tr>
<tr>
<td>7</td>
<td>902</td>
<td>638</td>
<td>70.2</td>
</tr>
<tr>
<td>8</td>
<td>920</td>
<td>369</td>
<td>39.1</td>
</tr>
</tbody>
</table>

The following conclusions can be made from the analysis:

(a) All treatments were significantly better than the control.

(b) The best treatment was 0.1 per cent. DDT (treatment 2).

(c) 0.1 per cent. dieldrin (treatment 6) was superior to every treatment except DDT.

(d) Treatments 4 (0.1 per cent. aldrin), 5 (0.05 per cent. dieldrin), 8 (0.1 per cent. endrin) and 3 (0.05 per cent. aldrin) were not significantly different from one another.

TABLE VI.—CHEWING DAMAGE.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1</th>
<th>7</th>
<th>3</th>
<th>8</th>
<th>5</th>
<th>4</th>
<th>6</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>3</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>4</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>5</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>6</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>7</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

VII. Discussion.

The experiment has indicated clearly that good control of tobacco leaf miner in the field in Western Australia can be obtained with aldrin, dieldrin, endrin and DDT.
Further, they all gave effective control of the chewing insects which damage tobacco at Manimup, Western Australia, but DDT spray at 0.1 per cent. strength and four applications throughout the growing season was the best treatment.

Endrin did not prove to be superior to DDT in Western Australia.

The relative importance of the chewing insects listed as attacking tobacco was not ascertained, but all were present at some stage of the experiment.

SCIENTIFIC NAMES

Leaf miner—Gnorimoschema operculella (Zell).
Cutworm, Budworm—Heliothis punctigera Wallengr.
Looper caterpillars—Plusia spp.
Grasshoppers—Phaulacridium vittatum (Sjost.). Gastrimargus musicus (F.). Austroicetes vulgaris (Sjost.).

ACKNOWLEDGMENTS

The author wishes to thank the Government Entomologist (Mr. C. F. H. Jenkins) for his interest and suggestions while this work was being carried out.

The help of the members of the Tobacco Section who carried out the planting, harvesting and curing of the experimental crop and also the help of other members of the Entomology Branch is gratefully acknowledged.

The author also wishes to thank Mr. N. Stenhouse, Biometrician, C.S.I.R.O., Nedlands, Western Australia, who freely gave helpful advice and carried out the major part of the statistical analyses.

FARMERS

This is YOUR Journal, and it has been written, edited and presented in a sincere endeavour to give you helpful information in an interesting manner.

We would like to have your views on the Journal—to know whether you like it or whether you don't. Drop a line to the editor and tell him the features you like and don't like in this issue—or the features you hope to see in future issues.
This new, practical scarifier does more cultivating jobs than ever! It gives fast, clean weeding, stubble mulching and general tillage; deep penetration in toughest conditions. Overhead bridle draught; easy control and adjustment. Ruggedly constructed in angle spring steel.

STREAMLINED DESIGN IS OUTSTANDING FEATURE

Best and fastest scarifier ever! Pull goes through vertical draught bar and pressure pipe to rear swings, then to tines. Pressure spring puts bridles always under draught or tension.

14-tine 7-feet cut
16-tine 8-feet cut
18-tine 9-feet cut
20-tine 10-feet cut

H. V. McKay Massey Harris Pty. Ltd.
Maylands, Western Australia

Manufacturers of farm-tested, quality-proven machinery for over 70 years.

Please mention the "Journal of Agriculture, W.A.," when writing to advertisers.
Are you wasting Drench?

To help you save . . .

here’s what C.S.I.R.O. says!

To be effective, Phenothiazine drenches should consist of particles smaller than 25 microns in diameter, (a micron is \(\frac{1}{25,000} \) of an inch), oversize particles pass uselessly through the sheep.

How can you tell which is an “effective” phenothiazine drench . . . which contains the least oversize particles?

You should make sure that the particles less than 25 microns are stated in percentage of weight. If the percentage is based on the number (count) of particles — not the weight — a false inference may be drawn, leading you to believe wrongly that the C.S.I.R.O. standard is being observed.

This chart shows that the percentage by number can be the same (90%) in both a “poor” or a “good” drench — BUT — only 50% by weight of the “poor” is effective compared with 90% of the “good” drench, with its finely divided particles.

Explanatory Diagrams only — NOT illustrative of Microfine* particles

<table>
<thead>
<tr>
<th></th>
<th>Poor</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured in number</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>Correct</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Measured in weight</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Correct</td>
<td>90%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Microfine* Microphene drench is guaranteed to have as much as 99% of its weight ground to the recommended fineness, and Liquaphene 97%.

When you use either Sickle brand mix-it-yourself Microphene or ready-to-use Liquaphene drench you can be certain that you are using the most effective and economical drench. Practically no Phenothiazine is wasted.

SICKLE BRAND

MICROFINE PHENOTHIAZINE POWDER

MICROPHENE

In packs to make 195 fluid ozs., or 390 fluid ozs.

PHENOTHIAZINE LIQUID

LIQUAPHENE

1 quart bottles and 1 gallon cans

Order now from your local agent or WESTRALIAN FARMERS' CO-OPERATIVE LTD.

569 Wellington St., Perth. BA 0191

* Registered Trade Mark applied for. Indicates a true micronised product.

Another SICKLE BRAND product Manufactured by Commonwealth Fertilisers & Chemicals Ltd.

Please mention the “Journal of Agriculture, W.A.” when writing to advertisers.