1-1-1969

Fertility build up under northern wheatbelt pastures

M L. Poole

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Agronomy and Crop Sciences Commons, Other Plant Sciences Commons, and the Plant Biology Commons

Recommended Citation

Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol10/iss3/4

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
Fertility build up under northern wheatbelt pastures

Cover Page Footnote
Thanks are extended to Messrs. A. Hesford and A. J. McKay who made land available for the trials, and to the district advisers and field assistants who assisted with planting and observations.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA’s research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA’s archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA’s research library website, DAFWA’s main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA’s research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
RESULTS FROM RECENT RESEARCH

FERTILITY BUILD UP UNDER NORTHERN WHEATBELT PASTURES

by: M. L. Poole

Experiments on two farmers’ properties demonstrated that legume pastures increase the fertility of northern wheatbelt soils. Crops on legume pastures had higher yields than crops on volunteer pasture. The experiments also indicated the most productive legume species for each situation and demonstrated that nitrogen added by legumes has a residual effect in the soil.

Experiment 1—Perenjori

In 1962, seven legume species were sown in a 12½ in. rainfall area on a red sandy loam. The site had been cleared in 1920 and carried jam and large mallee in its virgin state. Pasture establishment methods recommended by the Department of Agriculture were used except that the fertiliser was 180 lb. 50/50 lime-super per acre. The plots were lightly grazed over summer and topdressed with 95 lb. per acre super each year. Volunteer plots (Table 1) received the same cultivation and fertiliser treatments as legume plots.

Pasture results

When the pasture stage of the trial ended in 1965 it was concluded that Harbinger medic, Cyprus barrel medic and Geraldton subterranean clover were equally suited to the environment. The medics established fastest but grass build-up was greater under the sub. clovers. Table 1 shows production results in November, 1963, the last year in which detailed pasture evaluation was carried out.

Crop results

After the four year pasture phase, two successive crops of Gamenya wheat were planted, in May, 1966 and June, 1967, using normal district practices.

Experiment 2—Binnu

Seven pasture species and two pasture mixtures were sown on a yellow sandplain soil with loaminess increasing with depth. The area receives 14 in. annual rainfall and native vegetation is low scrub, grevillea, native pine and occasional mallee. The experimental site was on new land which had been cropped once and treated with super-copper-zinc fertiliser. Seeding was carried out in 1964 using establishment methods, and seed and fertiliser rates recommended by the Department of Agriculture. Volunteer plots received 185 lb. super per acre drilled. All plots were lightly grazed over summer and topdressed in autumn each year.

Pasture results

No quantitative measurements were taken but, when the pasture stage concluded in 1966, Harbinger medic was rated as the best legume species followed by Kondinin rose, Geraldton sub. clover, Cyprus barrel medic and Beenong cherleri. The lucerne was eaten out by rabbits in the first year.

The pasture mixtures (shown in Table 2) became progressively dominated by Harbinger medic.

Crop results

Gamenya wheat was drilled with 140 lb. super per acre in May, 1967, using normal seeding practices. Yield results on each of the pasture treatments are shown in Table 2.

Conclusions

In addition to indicating the most satisfactory legume species for each situation, the trials clearly demonstrated the value of even mediocre legume pastures for improving soil fertility. Both experiments indicated little difference in the level of nitrogen fixation by

Table 1. Comparative Production off Eight Pasture Areas

<table>
<thead>
<tr>
<th>Pasture Treatment</th>
<th>1963 Pasture Production</th>
<th>Crop Yields 1966</th>
<th>Crop Yields 1967</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Matter lb./ac.</td>
<td>Burr lb./ac.</td>
<td>Seed lb./ac.</td>
</tr>
<tr>
<td>Cyprus barrel medic</td>
<td>2,840</td>
<td>1,835</td>
<td>503</td>
</tr>
<tr>
<td>Harbinger medic</td>
<td>3,033</td>
<td>1,544</td>
<td>488</td>
</tr>
<tr>
<td>Snail medic</td>
<td>*</td>
<td>616</td>
<td>143</td>
</tr>
<tr>
<td>Burr trefoil</td>
<td>357</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dwalganup sub. clover</td>
<td>*</td>
<td>568</td>
<td>153</td>
</tr>
<tr>
<td>Geraldton sub. clover</td>
<td>*</td>
<td>1,701</td>
<td>655</td>
</tr>
<tr>
<td>Lucerne</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Volunteer pasture</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Measurements not taken.
† Eaten out by rabbits.
different legume species which grew satisfactorily; Experiment 1 also indicated that this nitrogen had a residual effect which raised second crop yields.

Acknowledgments
Thanks are extended to Messrs. A. Hesford and A. J. McKay who made land available for the trials, and to the district advisers and field assistants who assisted with planting and observations.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield—bu./ac.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondinin rose clover</td>
<td>24.2</td>
</tr>
<tr>
<td>Geraldton sub. clover</td>
<td>22.1</td>
</tr>
<tr>
<td>Harbinger medic</td>
<td>21.1</td>
</tr>
<tr>
<td>Mixture (Kond. Ger. Harb.)</td>
<td>20.7</td>
</tr>
<tr>
<td>Mixture (Harb. Cyp. Lucerne)</td>
<td>20.0</td>
</tr>
<tr>
<td>Cyprus barrel medic</td>
<td>19.3</td>
</tr>
<tr>
<td>Sirint rose clover</td>
<td>14.6</td>
</tr>
<tr>
<td>Beenong cherleri</td>
<td>14.1</td>
</tr>
<tr>
<td>Hunter River lucerne</td>
<td>10.8</td>
</tr>
<tr>
<td>Volunteer pasture</td>
<td>9.2</td>
</tr>
</tbody>
</table>

* Legume plots were very weedy and differences might have been even greater under weed-free conditions.
Grandpa, how does Southern Cross help the water so it doesn't get tired?

You can't blame a fellow for asking. And his grandfather knows. He'll tell the young farmer-to-be how the Southern Cross pump gets the water even up the hill. And how the Southern Cross Pressure Unit is a good way to get the water when and where you want it. There's water at strong pressure for a nice shower, and in the kitchen to help Mother. But it's more than that. A Southern Cross Automatic Pressure Unit helps with stock watering. Filling overhead tanks. Fire-fighting. All so quickly and efficiently that it pays for itself many times over. Whether you have an Automatic Pressure Unit or any Southern Cross Unit, it is backed by Southern Cross experience. And when you buy, Southern Cross credit facilities are at your service.
Or open a monthly account.
Benefit from specialised Southern Cross sales and service now. For complete, correct advice on all water supply problems, contact the Southern Cross representative in your area.

WEST AUSTRALIA:
MAYLANDS:
280-298 Whatley Crescent.
Ph. 71 6141.

FIELD REPRESENTATIVES:
BUNBURY:
Mr. A. Trainer, Box 296.
Ph. 2207.

GERALDTON:
Mr. G. Swepstone, Box 903.
Ph. 21 2897.
Mr. D. Beeck, Box 903.
Ph. 21 2897.

ESPERANCE:
Mr. K. George, Flat 2, Riviera Court.
Ph. 529.

Please mention the "Journal of Agriculture of W.A.," when writing to advertisers.