Fodder conservation brings bigger cream cheques

J. A. Carberry
FODDER CONSERVATION BRINGS BIGGER CREAM CHEQUES

CONSERVATION of plenty of fodder is undoubtedly one of the most important operations on the dairy farm. Conservation is the master key which, when turned to the full will help in attaining very good butterfat production, providing, of course, that breeding and "weeding" are being carried on wisely and that no serious diseases are encountered.

The growth of an average pasture in the Denmark district is shown on the accompanying graph.

The dotted line is drawn to represent the level of feeding at which cows should be fed to produce, say an average of 350 lb. of butterfat.

THE GRAZING HABITS OF COWS

Observations carried out to obtain information on how the cow spends her time, resulted in the conclusion that no matter how good or how poor the pasture is from a feed point of view, a maximum of only eight hours each day are spent in grazing. Thus, it is futile to graze stock over a big acreage of pasture when the feed is short in the belief that by having a large acreage to "go at" the cows will feed well and produce well. No matter whether the pasture be long or short, poor, medium or good, a cow will graze for only eight hours a day.

Production per day from a cow depends on feed per day for the cow. When the pasture is short the cheapest and most economical way of increasing the quantity of cream going into the cream cans, and eventually the money going into the bank book, is to feed sufficient conserved fodder.

In the Denmark district the biggest cream cheques of the year are usually in the months of October and November. The pasture growth curve shows that this
is the time of year when pastures are making the so-called “spring flush,” when the feed is “growing away” from the cows. These few short weeks make up the one and only period of the year when cows in their “work day” of eight hours grazing can consume sufficient pasture to enable them to produce to their capacity. It can be speculated whether the bigger the “flush” in spring the shorter the farmer has been of silage, and hay. In other words, the more outstanding the October and November cream cheques are compared to the other months of the year, the more likely it is that there has been a shortage of conserved fodder to supplement the pasture.

NUMBER OF MOWING PADDOCKS

It is a regrettable fact that the number of mowing paddocks in the “big timber” areas, such as Walpole, Nornalup, Kent River and Denmark is not high enough to carry out a full conservation programme. On farms with only a few mowing paddocks which have been cut for hay year after year, almost invariably acute symptoms of potash deficiency can be seen or have had to be rectified previously to avoid wasting the super which has been applied and to make it worth while cutting the paddock for hay.

Many farmers, because of this and other reasons, take up additional blocks and run bigger herds of cows over say 250-300 acres in the hope that this will be the answer to their quest for increased financial returns. A number of farmers who have tried this extensive system of farming have come to the conclusion that if they have to be farmer-timber clearers, they would rather intensively farm, say, 140 acres of pasture than try to cope with 250 or 300 acres of land, much of which carries fallen timber and bracken. They further conclude that they cannot give the attention to their stock that they would like, as it is a full-time job for one man to saw up fallen trees, mend broken fences, cut bracken and so on.

On lines not greatly removed from the above group, there is a small number of older settlers in these areas who relate that the bulk of their outside work for the last 30 years has consisted of sawing up fallen timber and mending broken fences. They further state that “there seems to be as much timber on the paddocks now as ever there was.” Where the 3 tons). As hay and silage were to be cut timber is capable of being handled by a bulldozer these farmers have already begun to get several acres pushed down each year. After this, they “can get down to some real farming by ploughing, leveling and re-seeding”: in short, they want permanently to increase the number of their mowing paddocks.

Quite a number of farmer are spending excessively on concentrates. The feeding of concentrates at high levels is definitely not economic. No-one knows better than the butterfat producer that his costs of production must be kept at the barest possible minimum. The cheapest of all feeds is pasture and next cheapest are silage and hay.

It would pay these farmers to work out if it would not be cheaper in the long run to have a few acres amenable to bulldozing completely cleared each year, then levelled and made fit for mowing to grow their own feed in the form of hay and silage rather than to spend a lot of “dead” money on concentrates. Whilst it is realised that this is not one-generation-country, an increased number of mowing paddocks means a better chance to stave off severe potash deficiency; more cheap feed in the form of silage and hay can be cut and less money need be spent on concentrates. In many cases there would be less time spent on sawing up fallen timber and mending broken fences and a farmer could “really get down to farming.” Furthermore average production per cow would increase and with it the size of cream cheques.

ROTATIONAL FARMING DEMONSTRATION

One farmer in the Denmark district has undertaken to carry out a rotational farming demonstration in co-operation with the Department. The farm chosen is a property of about 120 acres of pasture.

It was jointly agreed at the outset to plough up about 10 acres or so of the most worn-out pasture (depending on paddock size) and sow down in the autumn to a fodder crop of Algerian oats and inoculated Purple Vetches. Oats and vetches were used primarily as a cleaning crop and
secondly because they can be expected to yield a good bulk hay (around 50 cwt. or on a rotational basis rather than the same old paddocks to be continually cut year after year, the area was to be made fit for mowing by removing timber and levelling. The following autumn the area was to be sown down to perennial grass and sub-clover; in this case perennial ryegrass and mid-season subclover were to be used.

In actual fact, 15 acres were ploughed up and the oats and vetches gave a cut of 2½ tons per acre or a total yield of approximately 37 tons. This 37 tons on top of his usual cut of hay gave him more fodder than he had ever had before. The hay barn was choc-a-bloc full and all available sheds were used, but even so, some hay had to be stored in the open. His intention now is to build a new and bigger hay shed, and he is not in the least worried at the expense to be incurred. By feeding out this hay during the second year his cream cheques increased and frequently he was listed as having one of the leading herds in his Grade Herd Recording Unit. Financially he is better off; gross returns have increased and much more important, net profits are bigger. Moreover he has gained two extra mowing paddocks.

Having proved to his own satisfaction the value of plenty of conserved fodder, he knows he has taken a step in the right direction. He is keener than ever to continually increase the number of his mowable paddocks and from these the amount of fodder that he conserves.

ADVANTAGES OF SILAGE AND HAY

It is a virtual impossibility for cows to produce milk without water. Up to three gallons of water are needed to produce one gallon of milk in summer. In addition to plenty of water, there must also be sufficient protein-rich feed. Pastures, when they have dried out, contain next to no moisture and barely any feed value for milk production. Silage, because of its succulence and high protein content (when properly made), is one of the best and cheapest feeds for keeping the cows in profit during the hot summer months when pastures are dry and unpalatable. Obviously a cow which is in profit for 300 days is a much better proposition than one which milks for 200 days and then lives the life of ease of a non-paying guest for another 150 days.

For maximum efficiency of feed intake, it has been determined that cows should be neither constipated nor scouring but rather, that the droppings be mid-way between these two extremes. When a cow is constipated she is off-colour and does not feel like eating much to aggravate the condition. Production therefore falls. On the other hand, if she is scouring badly her digestive system is very badly out of order and the food tends to pass quickly through her, so that the value of the food intake is greatly lessened. Here again, production is lowered.

Some farmers state that watery green feed “doesn’t seem to have the guts in it” for milk production. Shortage of hay to “bind” the cows to counteract the tendency to scour is probably the main reason for their indifferent production.

Hay, with its low moisture content and medium feed value, can help balance the watery, high protein feed of pasture during the autumn and winter months.

DEPARTMENTAL RECOMMENDATIONS

Properties vary so much that precise recommendations cannot be stated. However, as a general guide, it is estimated that to adequately feed a herd during the summer it is necessary to cut the equivalent of two tons of silage for every cow in the herd. As the average yield of silage per acre of pasture is approximately five tons, two acres would provide sufficient feed for five cows. It is also recommended to cut about two tons of hay per milking cow, this quantity being sufficient to meet the needs of all stock including the “followers” and bulls up to the end of July during the summer, autumn and winter.

Some farmers think that these quantities are too high but as they will agree costs of butterfat production must be kept to a minimum, one cannot afford to feed expensive concentrates. When viewed from this angle the Department's recommendations carry a great deal of weight.

The aim should be to get high average production figures from the soil on the farm from pasture and pasture by-products, in the form of silage and hay, and to make the farm as self-supporting as possible.
Pastry case . . .
1 egg.
2-oz. sugar.
3-oz. shortening.
5-oz. flour.
½ teaspoon baking powder.
Pinch salt.

Raisin cream . . .
2 eggs (yolks and whites separated).
½ cup brown sugar.
1 tablespoon melted butter.
1 cup chopped seeded raisins.
½ cup cream.
1 teaspoon vinegar.
Little cinnamon.
Salt to taste.

To make pastry shell: Beat 1 egg and sugar together. Cut shortening into egg mixture. Sift flour, baking powder and pinch salt and work into creamed mixture. Turn on to floured board, roll out, spread on to pie plate. Leave a little pastry to make strips across plate.

Raisin cream filling: Combine yolks of eggs with brown sugar, melted butter. Add raisins, cream, vinegar, cinnamon and salt to taste. Mix well. Beat egg whites until stiff, fold into mixture. Pour into the uncooked pie shell and lattice across with strips of pastry. Bake in a hot oven for 10 minutes, reduce heat and cook for another 15 minutes. Serve with whipped cream.