1-1-1970

The growing season

Department of Agriculture, Western Australia

Bureau of Meteorology

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Climate Commons, Environmental Monitoring Commons, Meteorology Commons, and the Water Resource Management Commons

Recommended Citation

Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol11/iss4/7

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
Meteorological Notes

The Growing Season

By the Bureau of Meteorology

In Australia the seasons of summer, autumn, winter and spring do not have the importance that they have in the Old World, and though summer and winter weather are quite different, there is not the obvious difference in autumn and spring conditions that there is in the colder countries.

This is largely due to the difference in vegetation and in its life cycle in the different places. In Europe for instance, autumn is the time of falling leaves, when growth is slowing down in preparation for the period of dormancy during the cold of the winter. Here the cycle is reversed, and at this time of the year the first green growth appears in the brown dried up countryside. It flourishes during winter, but in spring, when the northern hemisphere is bursting into new growth, ours commences to dry out; annuals die and perennials become dormant during the summer.

Some of these differences are due to the different temperatures experienced, but the main factor influencing the growth of crops and pastures in Australia is rainfall— or the lack of it.

In the agricultural area of Western Australia the year may be divided into two main periods:

- The time during which annual plants will grow under natural rainfall conditions.
- The remainder of the year when they will not survive without watering.

Because in the southern half of the State our rainfall is of the winter type and summer rainfall is negligible in most places, the growing season commences usually towards the beginning of winter and finishes sometime after it. Near the west and south coasts where rainfall is high the season begins earlier and lasts longer, but it is not only due to the earlier and later rains that the season is longer in these areas.

The rate at which water is used by a plant depends on temperature and humidity, as moisture stored in the soil is transpired (or pumped out) by the plant faster in hot dry climates than in areas where it is cooler and more humid. Because of this a given amount of rain will be more effective in prolonging the growing season in the cooler areas, than in the hotter, drier districts.

![Graph showing average rainfall and effective rainfall for different locations in Western Australia.](image-url)
The minimum amount of rainfall necessary to initiate plant growth and maintain it above the wilting point, can be related to evaporation from a free water surface. This amount is sometimes termed the “effective rainfall” and may be estimated by the use of Prescott’s formula \(P/E = 0.7 = 0.54 \), where \(P \) is “effective rainfall” and \(E \) evaporation from a free water surface, both in inches per month. If, in any month, the amount of rainfall received is greater than the “effective rainfall,” that month is regarded as being part of the growing season.

The average length of the growing season at a particular centre may be obtained by drawing two curves, one showing average effective rainfall and the other average rainfall for the place concerned.

The effective rainfall curve is high at the beginning and end of the year and low in the winter months. The average rainfall curve is low in summer and high in winter, so that the curves intersect twice during the year. These points of intersection may be taken to represent the beginning and end of the growing season, as between these points average rainfall is greater than the minimum amount required to keep plants alive. The distance between the curves in the non-growing season might be regarded as an indication of aridity, as it represents the amount by which average rainfall falls short of that required to support life at the particular time of the year.

Figure 1 shows examples of these curves for places between Perth and Balladonia. Figure 2 shows the date of the opening of the growing season in the agricultural areas, and Figure 3 shows its length, as determined from a network of these curves.

To some extent the distance between the curves during the growing season provides an indication of its reliability. It can be seen that a surplus or deficit of an inch in any month at Perth will not alter the growing season very much, whereas at Lake Varley or Salmon Gums it could lengthen or shorten the season by a considerable amount.

The curves do not take into account water which may be stored in the soil before the season opens or any surplus which may remain in the soil at the time of the close of the season. However in most cases these will be comparatively small amounts.
Because different crops have different water requirements, the length of the season will vary to some extent with different crops. In addition, it should be remembered that the curves represent average conditions, and that there may be a marked variation between individual seasons.

Despite these variations, the data of Figs. 1 to 3 are very useful when comparing the agricultural potential of one district with that of another.

FIG. 3.—THE PERIOD DURING WHICH AVERAGE RAINFALL EXCEEDS EFFECTIVE RAINFALL (MONTHS)