Don't crop areas liable to waterlogging

Department of Agriculture, Western Australia
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
DON'T CROP AREAS LIABLE TO WATERLOGGING

The increasing areas of crops being sown in high rainfall districts make it likely that many crop areas include sections liable to severe waterlogging. This report presents results of a 1970 trial* which clearly show that sowing such sections is not economic.

Method

Forty 600 x 10.5 link plots were sown on May 21, 1970, at Mt. Barker Research Station with the crops and seeding rates shown in Figure 1. There were four replications of each treatment. Each plot sloped from a well-drained hilltop down into a valley liable to waterlogging and, before seeding, was top-dressed with 180 lb superphosphate per acre, and 300 lb urea per acre. (Figure 1).

The bottom half of the whole site was severely waterlogged during July and August, to a maximum depth of about 2 in.

Dry matter production and grain yield were measured by considering the bottom 200 lk of each plot as the waterlogged treatment, and the top 200 lk as non-waterlogged. Dry matter was measured on August 10 from a 9 x 10.5 lk sample area at each end of each plot. Similar areas were harvested to determine grain production on each treatment.

Results

Results for dry matter production and grain yield for each crop are summarised in Figures 1 and 2. As there were no differences between replications, the results for each crop are the average of its four plots.

Discussion

The results clearly indicate that sowing areas liable to waterlogging can be an uneconomic proposition. Even with barley, the crop whose

* Trial supervised by M. L. Poole, Research Officer, Plant Research Division.

Fig. 1.—Average dry matter production from waterlogged and unwaterlogged crops—300 lb urea/acre.

Fig. 2.—Average grain yields from waterlogged and unwaterlogged crops—300 lb urea/acre.
yield was least affected by waterlogging, grain production on the waterlogged area would not have repaid the cost of sowing and harvesting. The very poor performance of rape and linseed under waterlogged conditions should be noted.

Dry matter production was also considerably reduced for all crops. Wheat and oats were least affected by waterlogging, but it is doubtful if the dry matter production from their waterlogged areas would have equalled pasture production from the areas if they had been left unsown.

Acknowledgments
The trial was carried out with financial assistance from the State Wheat Research Committee.

SIMPLIFIED SHEEP SKIN TANNING

Most people would agree that a white sheep-skin rug adds a touch of luxury to any home.

The following method will produce dressed, woolly sheep skins with chemicals and equipment available to any householder.

1. If possible, select the pelt according to fibre quality, density, degree of staining and firmness of skin. Trim off any loose skin and flesh.

2. Soak for 24 hours in cold water with wetting agent or detergent at 1 cup to 20 gallons.

3. Scrape the softened skin with a fairly blunt knife to remove excess tissue.

4. Scour, using 2 cups soap flakes and 1 cup washing soda to 20 gallons of warm water. Keep the skin immersed for 1 hour and then rinse in warm water.

5. Repeat step 4 without the washing soda.

6. Rinse in warm water.

7. Immerse the skin for 24 hours in a bath containing 18 lb. alum and 40 lb. salt per 100 gallons of water, poleing every 20 minutes for the first few hours. Hang up to drain and, when just damp, brush the skin side with neatfoot or a vegetable oil if the former proves too odorous.

8. Following natural drying, which may take several days, the skin should be dragged over a fairly blunt edge to give the desired suppleness to the tanned skin. Follow this with combing.

Although the simplest to carry out, alum tanning will not withstand washing or dry cleaning and great care must be taken to keep the skin away from excessive heat.

* It is essential that agitation of the skin during wet processing is kept to a minimum to avoid felting of the wool. Use a relatively large amount of water and pole the skin every 5 to 10 minutes.

Provided by the Australian Wool Board.