1-1-1978

Soil salinity in Western Australia: a summary

T C. Stoneman

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Environmental Indicators and Impact Assessment Commons, Hydrology Commons, and the Soil Science Commons

Recommended Citation
Stoneman, T C. (1978) 'Soil salinity in Western Australia: a summary,' *Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 19 : No. 4, Article 2.*
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol19/iss4/2

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
Soil salinity in Western Australia — a summary

By T. C. Stoneman, Principal Soil Research Officer

Soil salinity problems have long been recognised in Western Australia. The earliest published explanation in 1924 suggested that removing native vegetation increased stream salinity, and this basic cause has been confirmed by many studies since.

Soil salinity as a result of agricultural development has been occurring for thousands of years. One of the earliest examples was in Iran where early civilisation developed successful irrigation schemes. These schemes eventually

Fig. 1.—Area of salt affected land previously used for crops and pasture

A typical area of severely salt-affected land in the wheatbelt
suffered from salt accumulation due to the development of shallow water tables.

Major salinity problems in the world continue to be associated with irrigation, but dryland farming has also caused soil salinity problems. Apart from Western Australia, significant areas are salt-affected in the Eastern States of Australia and in North America (page 115).

Extent in Western Australia

The extent of soil salinity has been estimated by farmers in surveys in 1955, 1962 and 1974. The area of once productive farmland now affected by salinity increased most in the Northern Agricultural areas. Results are summarised in Figure 1.

In addition to the areas of farmland that have turned salty, a further 378,000 ha was reported in the 1955 survey as being naturally occurring salt lakes, salt channels and samphire flats within farm boundaries.

Very little land in the South West Statistical Division is affected by salt. Consequently, articles in this Journal mainly concentrate on soil salinity in the wheatbelt—an area with from 275 to 600 mm average annual rainfall.

Understanding the problem

In the South-West of Western Australia, salinity problems have increased because of clearing of native vegetation to allow farming. Clearing affected the water table in a similar but less obvious way to irrigation where overwatering leads to the development of shallow watertables.

One of the earliest recorded contributions to an understanding of the cause of salinity was in 1924 by a Mr Wood, an engineer with the Western Australian Government Railways. He suggested that removing the native vegetation increased stream salinity and caused the subsequent deterioration in water quality in railway dams used for steam-train boilers.

A comprehensive report on soil salinity in Western Australia was published in 1929 by Dr Teakle of the Department of Agriculture. Three general categories of saltland were proposed and these still apply today:

- Seepage areas.
- Waterlogged valleys.
- Dryland salinity, in which waterlogging plays no part.

The next two decades marked a period of intense activity in surveying soils of the agricultural areas. Professor Patterson had predicted in 1917 that salt problems were likely in the Salmon Gums area and this proved to be substantially correct.

The problems of saltland in the Salmon Gums area led to extensive soil surveys in the Salmon Gums area, Lake Brown area, the Lakes district, the East Pingrup-Magenta area and the proposed 3,500 farm area south-east of Southern Cross. These surveys covered a total of about 3 million ha and gave a better understanding of the extent and nature of the salt problem.

Post 1950 research

Research by the Department of Agriculture and CSIRO since the mid 1950s has confirmed that highly saline water is close to the surface of salt-affected wheatbelt valleys (see page 104).

Studies have also indicated that most ground water is under pressure which is forcing it towards the surface (see page 106). The groundwater extends beneath the non-saline land on the valley sides but at a greater depth below the soil surface.

Soil surface treatments such as cultivation were shown to reduce the concentration of salts in the soil surface. However, attempts to reclaim saline areas by normal cultivation methods and normal plants such as cereals and annual ryegrass indicated that these methods were most suited to mildly affected areas, areas mainly growing sea barley grass, Hordeum marinum, and with few bare patches. On more severe areas special salt tolerant forage plants need to be sown.

Since the early 1960s a major effort by the Department of Agriculture has been the introduction and selection of productive salt tolerant perennial plants for areas considered too saline for any other use. The research is at the stage where seed of selected species is being multiplied and mechanised harvesting and sowing methods are being devised.

At the same time, studies on water and salinity balances of various areas in the wheatbelt have continued to gain an understanding of how much of the rainfall finds its way unused through the soil profile and into the groundwater.

Over the last six years, Department of Agriculture officers at Narrogin have investigated the effectiveness of a variety of cut-off drains and seepage interceptors. Many of these have reduced waterlogging over areas up to 40 metres below the channels, but as yet they have had little effect in reducing salinity downslope.

Also within the last two years, the Department of Agriculture has begun other investigations to monitor the effects of “interceptor banks”, which are recommended by some farmer groups for reclamation of salt-affected land.

Subsequent articles in this issue of the Journal provide more detailed explanations of the present state of knowledge about the causes of soil salinity in the wheatbelt.