Australian tractor tests : Fordson farm major : report on test no. 33

G H. Vasey

W. F. Baillie

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Applied Mechanics Commons, Energy Systems Commons, and the Ergonomics Commons

Recommended Citation

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
1. THE TESTS

(1) After twelve hours of running-in, two types of test were carried out, in order to measure the performance of the engine, as measured by the power in the belt driven by the belt pulley, and the performance of the tractor as a whole, as measured by drawbar pull, tractor speed, wheel slip, and drawbar horse-power (d.b.h.p.), with the tractor running on a bitumen test track.

The main results of these tests are given in Sections 2, 3, and 4. Other measurements and observations were made of various features of the tractor; these are given in Section 5.

(2) Fuel Settings.—The engine of this tractor has only one fuel setting, at which all the tests were carried out.

(3) Governor Control.—The engine was under the control of the governor set to give full fuel delivery, and so full power rated engine speed. (See note 2, paragraph 5, Other Observations, below.)

(4) Fuel.—Distillate, Diesel Index 54, Specific Gravity 0.84; weight per Imperial gallon 8.41 lb.

(5) Specification.—Engine No. 1506121. For a brief specification of this tractor see Section 6 at the end of this report.

The Australian Tractor Testing Committee is a joint body established by agreement between the Commonwealth, the States, and the University of Melbourne; under this agreement, the tests are carried out by the University of Melbourne. The address of the Tractor Testing Committee is: c/o Department of Primary Industry, 301 Flinders Lane, Melbourne.
2. SUMMARY OF POWER OUTPUT

Table A

<table>
<thead>
<tr>
<th></th>
<th>At the Belt</th>
<th>At the Drawbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated engine speed, r.p.m.</td>
<td>1,600</td>
<td>1,600</td>
</tr>
<tr>
<td>Maximum power (a)</td>
<td>39.8</td>
<td>34.3</td>
</tr>
<tr>
<td>Rated power (b)</td>
<td>34 (b1)</td>
<td>26 (b2)</td>
</tr>
</tbody>
</table>

Maximum shaft horse-power at 1,600 r.p.m.: 43.4. Note—Letters in brackets refer to explanatory footnotes.

(a) No atmospheric corrections are applied to diesel engines because there is no suitable formula; the values shown above are, therefore, the observed maximum powers.

(b) Engines are not expected to run indefinitely at full or maximum power output. But they can be expected to run continuously for some hours at rated output, which is less than maximum, defined as follows:

1. Rated engine speed, 1,600 r.p.m.
2. Fast idling speed, 1,700 r.p.m.*
3. Observed maximum b.h.p. at rated speed
4. Corrected maximum b.h.p. rated speed (a)
5. Calculated rated load (b1)
6. Test at approximately rated load
7. Average loading under governor (e)
8. Measured engine torque at full fuel delivery
9. Repeat of (3) above after 57 hours
10. Measure of average fuel consumption. It means about 1 gallon a variety of belt loads, from light to heavy. In terms one might expect from the engine while driving an hour.

When this figure is least the engine is giving its best economy or efficiency. It is easy to change from column (c) to column (d) in Table A, e.g., as follows:

ircular "unit," the kilowatt-hour). When this figure is least the engine is giving its best economy or efficiency. It is easy to change from column (c) to column (d) in Table A, e.g., as follows:

1. Rated engine speed, 1,600 r.p.m.
2. Fast idling speed, 1,700 r.p.m.*
3. Observed maximum b.h.p. at rated speed
4. Corrected maximum b.h.p. rated speed (a)
5. Calculated rated load (a)
6. Road gear not tested
7. No correction made for diesel engines
8. No correction made for diesel engines
9. Part throttle, maximum d.b.h.p. in first and second gears limited by wheel slip.

Table B—Belt Test Results

<table>
<thead>
<tr>
<th>Gear</th>
<th>B.H.P.</th>
<th>Engine Speed</th>
<th>Gall./hr. (c)</th>
<th>lb./b.h.p. hr. (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>39.8</td>
<td>1,600</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>34 (d)</td>
<td>34.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>34</td>
<td>1,680</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>36</td>
<td>3,100</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>5</td>
<td>2,550</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>22 (1)</td>
<td>1,250</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table E.—Fuel Consumption, Various Loads, Rated (3rd) Gear

<table>
<thead>
<tr>
<th>Gear</th>
<th>Pull lb.</th>
<th>Speed m.p.h.</th>
<th>DBHP</th>
<th>Slippage %</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,700</td>
<td>3.54</td>
<td>16</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2,300</td>
<td>3.45</td>
<td>21</td>
<td>62</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2,600</td>
<td>3.25</td>
<td>23</td>
<td>78</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3,650</td>
<td>3.25</td>
<td>32</td>
<td>92</td>
<td>8</td>
</tr>
</tbody>
</table>

† Approximately rated drawbar load.
(2) Interpretation of Drawbar Tests—

(i) Drawbar tests are carried out on a hard, prepared surface. Most field conditions present higher resistance to the tractor's motion, so that, in the field, the maximum drawbar pulls available in any gear will usually be less than those shown in the tables.

(ii) Wheel slip may also be greater in the field; to that extent tractor speeds in miles per hour in the field will be less than those shown in the tables.

(iii) Because of (i) and (ii) above, the drawbar horse-powers available in any gear in the field will usually be less than those shown in the tables.

5. OTHER OBSERVATIONS

(1) Duration of Test.—57 hours, including running-in.

(2) Repairs and Adjustments.—High idle speed was reduced from recommended 1,900 r.p.m. to 1,790 r.p.m. to give maximum power at rated speed.

(3) Engine—

Fuel Settings—one, fuel pump calibration checked in accordance with specification.

Heat controls—radiator and 4-blade fan, thermostat.

Radiator water used—none.

Lubricating oil—S.A.E. 20.

Weight to engine, 16.8 lb.; Weight from engine after tests, 14.0 lb.

(4) Tractor Weights (lb.).

<table>
<thead>
<tr>
<th>Weight Condition</th>
<th>Front</th>
<th>Rear</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard, unballasted</td>
<td>1,930</td>
<td>3,470</td>
<td>5,400</td>
</tr>
<tr>
<td>Maximum weight, heaviest</td>
<td>1,930</td>
<td>4,980</td>
<td>6,910</td>
</tr>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water ballast (lb./wheel)</td>
<td>325</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Solid ballast (lb./wheel)</td>
<td>450</td>
<td>450</td>
<td></td>
</tr>
</tbody>
</table>

* This weight, including driver and fuel, was used in finding centre of gravity.
† Weight of tractor in drawbar tests quoted in this report.

(5) Wheels and Tyres—

<table>
<thead>
<tr>
<th>Tyres</th>
<th>Front</th>
<th>Rear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Rib</td>
<td>Open centre bar</td>
</tr>
<tr>
<td>Size</td>
<td>6-00 x 16, 6-ply</td>
<td>12 x 28, 6-ply</td>
</tr>
<tr>
<td>Pressure</td>
<td>28 psi</td>
<td>12 psi</td>
</tr>
</tbody>
</table>

6. BRIEF SPECIFICATIONS

Fordson Farm Major. (Based on Information Supplied by Manufacturers)

(1) Engine—No 1506121.

4-stroke; 4 cylinders, vertical; crankshaft along tractor; direct injection diesel.

Bore, 3.937"; stroke, 4.524"; compression ratio, 16 : 1.

Rated speeds: Belt and drawbar work, 1,600 r.p.m.

Fuel type: Distillate.

Fuel system: Simms 4-cyl. in-line pump, 4-hole spray type injectors. Two replaceable-element filters in series. Tank capacity, 15 gallons.
Air Cleaner: Oil bath, perforated metal and fibre pre-cleaner.
Governor: Pneumatic, incorporated in fuel pump.
Electrical system: 12-volt battery and generator.
Starting: Electric, cold starting.

(4) Power Take-off—
Centre rear; clockwise; guarded.
Speed (at rated engine speed) 540 r.p.m.; in accordance with overseas standards (namely, 536 ± 10 r.p.m.).
Dimensions: 6 spline, 1⅜" diameter.

Cooling: Water (pressure system) fan, pump, and thermostat.
Exhaust: Vertical ahead of operator.
Standard Fordson Major Spark arrester.
Lubrication: Replaceable element filter.

(2) Chassis—
4-wheel; pneumatic tyres.
Wheel base 80".
Track widths: Front 50½" x 4" steps to 74½"; rear 58" x 4" steps to 72".
Tyre sizes: Front 6.00 x 16; rear 12 x 28.
Steering: Recirculatory ball drive.
Weight: Maximum, 6,910 lb.

(3) Belt Pulley—
R.H. side, forward working, clockwise rotation. Diameter 8½"; face width 6¼". 2 speeds (at rated engine speed), high, 1,600 r.p.m.; low, 890 r.p.m.
Belt speed (at rated engine speed), high 3,560 ft./min., not in accordance with overseas standards (namely, 3,100 ± 100 f.p.m.). At 1,400 r.p.m. engine speed, belt speed would be 3,115 ft./min.

(5) Drawbar—Swinging—9 positions across.
Height, adjustable, 13", 11", 9".
Linkage mounted drawbar also available.

(6) Transmission—Conventional gears.
Clutch: Single dry plate; 11" diameter.
Gear ratios and road speeds (assuming no wheel slip) on 12 x 28 tyres, at rated engine speed, as advertised.

<table>
<thead>
<tr>
<th>——</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ratio</td>
<td>123.0</td>
<td>87.3</td>
</tr>
<tr>
<td>Speed m.p.h.</td>
<td>1.8</td>
<td>2.6</td>
</tr>
</tbody>
</table>

(7) Hydraulics—Built-in, gear pump in rear axle.

(8) Three-point Linkage—Generally conforms to BS1841-1951, Category 2.

G. H. VASEY, Officer in Charge Tractor Testing.
W. F. BAILLIE, Tractor Testing Officer.

120 M.P.H. WIND HITS TREES! . . .
And They Love It. Because the 120 m.p.h. air blast came from a

METTERS P.T.O. AIRMIST

The twin fantail unit for rows of small trees 12 to 16 feet apart.

The METTERS AIRMIST is a concentrated sprayer that atomises the already fine spray into a mist that blankets the trees, depositing fine drops that spread evenly for the most effective protection.

- AIRMIST spraying by the concentrate method gives faster, more effective coverage without waste.
- Produces more first-grade fruit. Uses only 125 gallons of water instead of 500 gallons by the old method for the same area.
- Saves 75% labour, 30% spray material and covers approximately two acres per hour.
- All components and controls are easily accessible.
- AIRMIST is the lowest cost machine of its kind.

847-851 Hay Street, Perth. Phone 219461

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.

The "ANTI-STRIP" method of sheepshower was discovered by the C.S.I.R.O., and today can be practically applied by means of this "ANTI-STRIP" Sheepshower.

★

EASY TO INSTALL OR SERVICES OF CONTRACTOR AVAILABLE TO COMPLETE THE INSTALLATION.

★

Ask for a Dalgety's representative to call, to select yard site with no obligations.

★

CONTACT YOUR W.A. DISTRIBUTORS NOW

for further details

Dalgety

AND COMPANY LIMITED

OR THEIR AGENTS

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.