A new type of seed bed cover for the market garden

R R. Bell
M. Hardie

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Agricultural Economics Commons, Construction Engineering and Management Commons, and the Horticulture Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol2/iss4/13

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact library@dpird.wa.gov.au.
ALL market gardeners use seed beds in their gardening programme. However, the basic design of seed beds and covers has not greatly altered over the years. The availability of cheap good quality plastic materials has now shown the way to improvements in the design of this type of gardening equipment.

One of the features of the Field Day held at the Vegetable Research Station last November was a demonstration of a new type of seed-bed cover developed at the station.

The framework for the cover is made from industrial fencing wire and then covered with polythene.

Most people are aware of the construction of the frames that are generally used.
Frequently about eight feet in length they are made from fairly heavy timber. The back is usually higher than the front for weather protection and to catch sunlight. The covering for the top is either glass or windolite in frames or a roll of canvas. They can be adjusted to meet the needs of the weather.

These frames have disadvantages in that being constructed of stout timber they are hard to move and become more or less permanent fixtures—not always in the most convenient site. They are difficult to maintain in the state of hygiene which is necessary for the raising of healthy seedlings.

It had been noticed at the research station too that after a batch of seedlings had been raised to nearly the required size, removal of the wooden frame greatly stimulated growth. It was felt that the freer movement of air was responsible for this improvement and that a seed bed cover could be constructed which would allow better control of air circulation.

Details of the construction of this new cover are shown clearly in the accompanying photographs. The industrial wire is purchased in sections measuring 6 ft. x 6 ft. and this is curved quite easily to form a semi-circle. A piece of polythene measuring approximately 10 ft. x 6 ft. is used to cover the framework. The thickness of the polythene used at the research station was .004 in. A heavier gauge would have a longer life but would increase the cost. The cost of the wire frame was 22s. whilst the polythene to cover it would be approximately 20s. Two light wooden battens on
4.—The frameworks stacked one on top of the other for ease of storing which to roll the polythene at each side and four gutter bolts to hold these in place on the frame would add a few more pence to the total cost.

A carrying handle made from fencing wire and a piece of conduit is clearly shown in the photographs.

The advantages of this new frame over the old type are listed as follows:

1. They can be quickly and easily moved to allow fumigation of the soil.
2. They can be placed in any position as the polythene will allow the entry of light and heat to the seedlings.
3. The frames can be propped up from either side to allow movement of air through the seedlings and also to act as a windbreak. They can also be easily removed from the seedlings.
4. When not in use they can be stored one on top of the other, thereby conserving storage space.
5. They are cheap to construct and should give many years of service.

A further advantage of these covers is that when not being used for raising seedlings they can be used in the curing of vegetable seeds. Most market gardeners grow their own seed for at least one type of vegetable whether it be onion, carrot, parsnip or cauliflower. Containers to hold the flowers when the seed is curing are not always available.

By inverting the seed bed cover and making a shelf from the same industrial wire to fit about the middle of the frame, an excellent container for curing seed is on hand. This shelf also helps to make the frame quite rigid.
THE NEW LYSAGHT
500 BUSHEL GRAIN SILO

Easier and cheaper to erect!

* Patent pending No. 55007/59.

PRICE
£93 ex Fremantle Store

Each feature carefully planned for your convenience

- Vertically Rigidised Walls and 6-Ply Horizontal Ribs for added strength.
- Two bagging outlets — complete with steel covers.
- Improved Centre and Side-Filling Hole Assemblies — complete with hinged lids and positive fastenings.
- Combined Roof Step and Ladder support.
- Wider Turned-Down Eaves on Roof Panels.
- Segmented Steel Floor.
- Fully Rodent-Proof Construction.
- Optional Extra — Steel Earth Ring.

LYSAGHT SILOS
Prices Ex Fremantle Store

<table>
<thead>
<tr>
<th>Nominal Capacity</th>
<th>Steel Floor (Optional Extra)</th>
<th>Steel Earth Ring (Optional Extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,200 Bushels</td>
<td>£137</td>
<td>£11.10</td>
</tr>
<tr>
<td>1,200 New Type</td>
<td>£103</td>
<td>£7.00</td>
</tr>
<tr>
<td>2,000 Bushels</td>
<td>£249</td>
<td>£22.00</td>
</tr>
<tr>
<td>2,000 New Type</td>
<td>£172</td>
<td>£17.00</td>
</tr>
<tr>
<td>3,100 Bushels</td>
<td>£368</td>
<td>£22.00</td>
</tr>
<tr>
<td>3,100 New Type</td>
<td>£318</td>
<td>£31.10</td>
</tr>
<tr>
<td>3,700 Bushels</td>
<td>£348</td>
<td>£31.10</td>
</tr>
</tbody>
</table>

*Prices include Steel Floor. Silos from 1,200 bushels capacity upwards are fitted with full-size "walk-in" door.

Write for further information to:
John Lysaght (Australia) Limited
8 Pakenham Street, Fremantle.

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.