1-1-1979

How to select a tractor

W T. Brown

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Agricultural Economics Commons, Agronomy and Crop Sciences Commons, and the Applied Mechanics Commons

Recommended Citation

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
How to select a tractor

By W.T. Brown *

At the last count, 43 makes of tractors were available on the Australian markets. Each maker offers quite a few different models, so that when you come to choose your next tractor, you will be able to pick from rather more than 200 options.

In fact, when considering individual needs, the range of options is much reduced. Most people would be lucky to have a choice of twenty, and a considered approach will reduce these to three or four.

Size

The first decision to make is how big a tractor you need, rather than how big a tractor you want. This is related to the scale of operations, and the time available for each job.

A mathematical method for calculating the size of tractor needed is set out on the next page. The basic calculations can be made with pencil and paper.

Some rather sweeping assumptions have to be made about draft requirements or implements, about soil variability, about maintenance habits, and about managerial ability. To really work, the calculations require a good knowledge of seasonal variations and the effects of working over a longer or shorter time. You need to make some guesses about how your farm will develop, and what future work patterns will be.

The game becomes so complex, that it is useful to have a computer to help with the calculations, to give not only machine sizes, but the possible profits or losses for each choice. Such programmes are available, and as the scale of operations increases, and the consequences of each decision have more effect on profit and loss, so more use will be made of computer programmes. But we will need more information than most of us have at present.

Machinery purchases are often decided by “past experience”, by some kind of scaling up based on past operations, by what neighbours do, and by what we read in the papers, see at field days, or hear from dealers. Those who manage to make the right decision make money; those who consistently make the wrong decision go broke.

The first decision will be on the size of the tractor required. If the present tractor is coping then why buy a bigger tractor? You will need more power if you have increased or intend to increase the area worked. How much more will depend mainly on the extra area, but also on the amount of extra travelling that may be necessary to get to scattered blocks, and similar factors.

The other main justification for increasing the power of the tractor is because the amount of labour has been reduced. If you are not going to employ labour, and want to do it yourself, if casual labour is not available, or if you are no longer

*W. T. Brown
Officer-in-Charge,
Agricultural Engineering Centre
Werribee, Victoria
prepared to work the long hours you have in the past, then you will need more power.

Power determines how quickly you get through a particular job. You need more power to get through more work in the same time, or to get through the same work in less time.

There are other options to buying a tractor to consider at this stage. Is there a neighbour with excess capacity of labour or power who might contract or form a syndicate? Can better labour management and work organisation increase output?

Engine and fuel economy

Having decided the size of tractor by calculating or scaling, there remains a lot to settle. The main feature of the engine is its power. You should also look at other features such as the torque back-up; from rated speed to maximum torque it should be 10 per cent or more. While 20 per cent back-up is better than 10 per cent, there is no particular merit in having 30 per cent rather than 20 per cent. Like plant nutrients, it is sufficient to have enough; other factors will then limit performance.

Fuel economy is going to become more important as fuel prices go up. Remember that you can’t get power without burning fuel, so more power means higher fuel consumption (litres per hour). On the other hand, fuel economy is a measure of how efficiently the fuel is converted to work and is measured in litres per kilowatt-hour or gram per kilowatt-hour.

Some tractors have poor fuel economy at lighter loads, and this should be checked where possible. The difference could be as much as 25 per cent of the fuel consumption over an average working day.

The air cleaning system will have an influence on wear. Our Australian conditions of dust are severe so look for an intake ahead and high up. These are brief generalisations, there are other features which there is not space to touch on. Some of these are swept volume, speed, turbo-charging and intercooling.

Gear Box

Having chosen the power, you need to look at how this will be converted to useful work. The gear box gives the first transformation. A mechanical gear box is more efficient and cheaper than an hydrostatic transmission, and so should be preferred for broad area work. The hydrostatic transmission will come into its own where there is a lot of forward and back manoeuvring or variation in loading.

The gear box should give you a selection of six to eight speeds over the working range. Fewer than this will limit choice of implements and working speeds; more than this becomes duplication and more expensive than necessary.

An on-the-go shift will help to keep working rates up if you have the odd heavy patch around your paddock, and goes some way to giving the flexibility of the hydrostatic transmission. There will be some power loss, but this is probably out-weighted by the gain in working rate.

Wheel equipment

The second stage of the transformation of engine power to useful work is through the wheel equipment. This is an aspect of tractor selection is more fully dealt with in another paper.

For many farms, the option of four-wheel-drive (4WD) should be considered, not only for very big tractors. The main advantage is a better conversion of engine power to drawbar power. How much better depends on the soil conditions. The worse the traction conditions, the greater the advantage of 4WD. This means that work can be done quicker, using less fuel, and perhaps with less tyre wear. The main disadvantage is the increased cost.

Typically the 4WD will cost about 20 per cent more than the same size 2WD, but the work rate has been shown to be 10 to 20 per cent greater, and there are also fuel savings. In terms of crop yield it can mean the difference between getting a crop in, or doing no seeding at all.

Comfort

Of growing importance over the past few year has been the comfort of the operator. Seating has improved, with sprung, damped seats, adjustable for driver’s weight becoming almost universal.

A sound-treated cabin is highly desirable to protect hearing, and to reduce fatigue over the working day. Noise levels below 85 dB.A. are generally regarded as “safe”. Only a small percentage of the population will suffer hearing damage at levels less than this. Lower levels are less tiring also.

In looking at different tractors, check visibility from the driving seat both to the rear and forward, and particularly of the drawbar hitch point. Check the position of lights if you are going to work at night; check the position of the controls and how easy they are to operate. These less important factors may help to choose between models.

Don’t underestimate the importance of comfort. We look for more comfort the older we get.

Service

Farmers rate service highly when considering buying a tractor. You need to place a value on the service you can expect for spare parts availability and for competent repairs. Your confidence in your ability to handle repairs will affect the value you place on dealer service. If you intend to try to service the tractor yourself then look at how accessible the engine, transmission and other components are, and what special tools or facilities may be required.

There is much to be said for not buying the early machine off the production line; a better strategy may be to wait for the later production runs that have had early faults corrected.

It is difficult to get reliable information on the comparative durability of different makes and models. Local gossip may be a
guide, but don't rely on the evidence of one example. In any event, it is good practice to read the instruction book soon after you buy the new tractor, and also to spend an hour or two making your own inspection and pre-delivery check.

Price

After size, price is the next most important. The most power for the least cost is a desirable objective. But while the initial capital cost is important, it must be balanced by both the rate of depreciation, and by operating costs. Some tractors lose their market value much faster than others, and this should be considered in assessing the cost. Operating costs include the cost of fuel, spares, tyres, oil and filters. The direct cost of these is worth checking as the Prices Justification Tribunal enquiry showed that prices of similar parts from different firms varied widely. Some value should be placed on the hidden costs of breakdowns too. Delays in spare-parts supply can lead to losses in yield.

Summary

The selection of a farm tractor can be influenced by many factors, each of which merit consideration when purchasing a new unit. Nobody can make a broad generalisation that a particular tractor is best for broad-area cereal growing. Every farmer must consider his own options. Having made a selection, it is up to you to operate it to get the most of your money.

Calculating tractor size

The following procedure will be helpful, but not highly accurate or infallible.

1. Decide how much area is to be covered in the operation.
2. Decide how much time is available (number of days x hours/day).
3. Calculate how much area will be covered per hour.
4. Estimate your per cent field efficiency = time actually working x 100 / time in field
5. Calculate the necessary working rate (ha/h) = ha 1
 hours x per cent field efficiency
6. Decide your working speed.
7. Calculate the required width of implement (metres) = work rate (ha/h) x 10
 speed (km/h)
8. If the calculated width is acceptable proceed to 9 below; if the width is too great reconsider the decisions made above then recalculate.
9. Estimate the draft to the implement (kiloNewtons/metre). See Table 4, page
10. Calculate (in the case of tillage gear) drawbar pull required (kN) = draft (kN/m) x width (m).
11. Calculate drawbar power (kW) = pull (kN) x speed (km/h) / 3.6
12. If the calculated drawbar power is reasonable, proceed to 13. If too big, reconsider some of the assumptions made above and recalculate.
13. Assume that power-take-off power (kW) is about 1.6 times drawbar power (kW).
14. Repeat calculations for each operation to discover the maximum power required.
15. Find the capital cost of the tractor.
16. Calculate:
 - Fixed costs: depreciation, interest, insurance, shelter, registration. Operating costs: fuel, repairs and maintenance, tyres, oil and filters etc.
17. Calculate hourly cost of running ($/h).
18. Calculate cost (dollars per hectare) of operation.
19. Repeat these calculations for different assumptions of the time available to do the operation.
20. Estimate the loss in yield for extra time taken to do an operation, or the loss of opportunity to do other income-earning jobs.
21. Estimate the benefit per unit cost of each option size of machine.
22. Choose the size giving the best return.