How rabbit poisoning methods work

S H. Wheeler
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
How rabbit poisoning methods work

While the “rabbit plagues” of the past are a distant memory for most farmers, rabbit numbers must still be controlled in many parts of Western Australia. Rabbit control techniques rely heavily on poisoning, which given the right conditions can kill a high percentage of rabbits at risk.

Recent research by the Agriculture Protection Board has been aimed at determining how different poisons, baits and poisoning methods work. By knowing in detail how each method works and what influences its results, we can choose the best control method for a particular place and time, avoid costly failures, and increase the effectiveness of rabbit control.

Esperance study

Studies were carried out in the Esperance area to find out how four poisoning methods work.

They were:
- Conventional 1080 (carrot bait)
- Conventional 1080 (oat bait)
- One-shot 1080 (oat bait)
- Pindone (oat bait)

In conventional baiting, rabbits are free-fed unpoisoned carrots or oats in a furrow for several nights to accustom them to feeding on the bait. Individual rabbits (shy feeders) may hesitate for several days before feeding at a bait trail. Then a poisoned trail, where each oat or piece of carrot contains 1080, is laid. This method is widely used in eastern Australia where summer rain may occur, and can be used by farmers in Western Australia.

One-shot baiting is the standard method used by the Agriculture Protection Board for contract poisoning. Poisoned oats which contain more than enough 1080 in one oat grain to kill a rabbit are mixed with unpoisoned oats in a ratio of 1:99. The unpoisoned oats act as a free-feed, and the high level of 1080 in the poisoned grains guards against rabbits getting a sublethal dose and becoming bait-shy. The bait is laid in one operation, without prior free-feeding, so the costly labour input of the conventional methods is eliminated. The quantity of bait material is also lower.

Pindone is an anticoagulant poison (similar in action to warfarin in rat baits) which is registered for use against rabbits in Western Australia. It is a slow acting poison which has to be eaten over several days before it takes effect, and is much more toxic to rabbits than to sheep, cattle, dogs and man. It is safer to use than 1080 but is more expensive as larger quantities of bait are needed.

As one-shot 1080 is highly toxic to stock, dogs and man, only the minimum amount required to obtain good rabbit control should be used. Unfortunately, there is a tendency when using pesticides to use more than the recommended dose in expectation of better results. This is more expensive than necessary and can increase the risks from use of the pesticide.

The recommended bait ratio is 1 per cent (1 poisoned oat grain: 99 unpoisoned oat grains) but some people believe that a 2 per cent ratio could produce better kills. This is not supported by any concrete evidence. In fact, previous trials showed no difference in effectiveness between 0.5 per cent, 1 per cent and 2 per cent ratios. In these earlier trials, spotlight counting was used to measure the final kills, but gave no information on how they were achieved.

In the trials reported here, where the objective was to show how the method works, one-shot 1080 was tested on three adjacent sites using the more widely separate ratios of 0.25 per cent,

By
Dr S. H. Wheeler,
Research Officer

Rabbits used in trials are fitted with radio-collars (above left) so that they can be tracked.
Figure 1. The percentages of rabbits alive during different poisoning treatments. The poisoned baits were laid on day 0.

The full effect of one-shot 1080, which was laid during dry weather, was not achieved until six to nine days after the bait was laid (Figure 1—d,e,f). Had heavy rain fallen, particularly in the days immediately after laying the bait, it is likely that final kills would have been less because of loss of 1080 from the oats. Previous field trials have shown that one-shot 1080 is less effective in winter than in summer. For full effectiveness this method is restricted to dry periods of not less than 10 days.

Despite the 16-fold difference in the concentrations of poisoned oats in the one-shot baits, the final kills in the three one-shot trials were similar. There were slight differences in the mortality patterns: the 0.25 per cent bait produced a slower but steadily maintained kill; the 4 per cent bait produced a faster initial kill which tailed off markedly; and the 1 per cent bait gave an intermediate picture—a moderate initial kill and later a more steadily maintained rate.

The increased hazard of high concentrations of 1080 is not offset by an increase in final kill or in the overall time taken to reach it. In the 4 per cent trial the last rabbit died on the ninth day, in the 0.25 per cent trial the last rabbit died on the sixth day.

The concentration used in the field should be as safe as possible while still being effective. It appears that one-shot bait containing less than the current standard of 1 per cent poisoned grain would still give good results.

Poisoning guidelines

The studies of mortality patterns of rabbits have led to the following recommendations:

One-shot 1080
- Do not use this method except when a dry period of not less than 10 days is anticipated.
- Do not use a concentration greater than 1 per cent. Less than this may be equally effective.

Conventional 1080
- Use this method at any time of the year. If used in winter, poisoned bait must be laid on a night when it is not raining.

Pindone
- This method can be used effectively at any time.