1-1-1984

Alternative pasture species for deep sands

D A. Nicholas

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Other Plant Sciences Commons, and the Soil Science Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol25/iss3/8

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
By D. A. Nicholas, Division of Plant Research, Department of Agriculture

Although the climate of the Swan coastal plain between Perth and Bunbury is suitable for growing a range of pasture species, some soil types greatly limit this range.

Pasture species commonly grown in the South-West, such as subterranean clover and annual ryegrass, can only be grown successfully on the better soils of the coastal plain—the loams, yellow sands and Joel sands. On the freely drained, deep, infertile Gavin sands such species rarely persist because of the soil's poor water holding capacity, its water repellency and its poor ability to retain nutrients.

Causes of poor plant growth

Soils such as the deep grey Gavin sands have a water holding capacity of only 20 to 50 millimetres per metre depth compared with 100 to 150 mm per metre depth for a sandy loam.

For germination many seeds must be kept moist for at least two to three days, with further moisture if the roots are not to dry out. With the surface 20 mm layer of sand holding only 0.4 mm moisture, and evaporation averaging 3 to 4 mm/day in April, effective rain is needed almost daily for a week to successfully establish plants on the Gavin sands. Unfortunately such long rainy periods do not usually occur until June or July by which time many seeds have died.

Water repellency, caused by coatings of organic matter on the surface of coarse textured soil particles, exacerbates the problem. It results in uneven wetting of the sands and delayed germination. The later germinated plants are vulnerable to attack from insects such as red-
to what could be grown is sought. Some success left such sandy soils in their native state. Soil being tapped for nutrients, plant growth is further restricted.

Towards the end of the plant growing season evaporation and transpiration losses increase. Because of the poor water holding capacity of sandy soils, plants can die after short dry periods. In contrast plants growing on soil with a higher water holding capacity could survive to take advantage of later rains. Premature death has disastrous consequences on long term persistence and production of annual plants which rely heavily on seed production each year. With hindsight it would have been wiser to have left such sandy soils in their native state. However areas have been cleared and advice as to what could be grown is sought. Some success is possible with lupins and serradella but other annuals usually fail in the poor soil environment.

The following are a number of perennial species which could provide some pasture growth on the Gavin sands.

Veldt grass *(Ehrharta calycina)*

Veldt grass is an erect tufted warm season perennial grass native to South Africa. Once established, stands can thicken if natural reseeding is allowed. The cultivars Unarlee and Mission are available as seed. Veldt grass is readily eaten by stock and requires careful grazing management if the stand is not to be eaten out. Some farmers have successfully used a mixture of veldt grass and the deep rooted annual legume serradella by grazing the stand mostly over summer and autumn.

Lovegrass *(Eragrostis curvula)*

Lovegrass is a warm season perennial bunch grass native to southern Africa. A number of cultivars are available overseas but the local type (classified as a robusta blue type) is best adapted to local conditions. Once established lovegrass is tolerant of normal grazing. Unfortunately the herbage is a poor quality feed for most of the year. Its main value is in binding soil.

Tambookie grass *(Hyparrhenia hirta)*

Tambookie grass is a narrow-leaved perennial bunch grass from the Mediterranean basin. It grows better during winter than lovegrass and veldt grass. Tambookie grass has a dense tuft of basal stems and is well adapted to grazing once established. Seed production and establishment is difficult because satisfactory germination requires a minimum temperature of 15°C with an optimum of 25° to 30°C. On the coastal plain such temperatures occur in spring or summer when soil moisture conditions are unfavourable for reliable seedling establishment. Feed quality appears better than that of lovegrass and it persists better than veldt grass. A mixture of tambookie and serradella could be successful.

Couch grass *(Cynodon dactylon)*

Couch grass is a warm season perennial grass which spreads by rhizomes and stolons. Its establishment and growth is poor on recently cleared soils. If soil fertility can be built up by growing lupins, some success is possible. Seed of a number of cultivars is available.

Tagasaste or tree lucerne *(Chamaecytisus palmensis)*

Tagasaste is a hardy leguminous perennial shrub capable of producing good quality foliage. The shrubs can be established by direct seeding or by transplanting seedlings. The shrubs should not be grazed for the first one to two years to encourage satisfactory establishment and persistence. Feeding out is a problem but stands can be electrically fenced off if mechanical harvesting is not possible.

Discussion

Most of the species mentioned are summer active perennials that can use rain received throughout the year. Because they are perennials, they overcome the major re-establishment problems faced each year by annual species in the poor soil environment. They are all deeper rooted than the common annual pastures and can use the moisture and nutrients deeper in the soil profile. Satisfactory persistence can be achieved with minimal fertiliser applications.

If perennial species are to be grazed they need much more intensive management for successful establishment and maintenance than most annual species. This has restricted their widespread use. Where areas can be fenced off and left ungrazed veldt grass and lovegrass readily establish and spread.

Growing perennial species may improve the productivity of the deep well drained sands compared with that from currently available annuals. They could also be useful on lower sandy slopes where annuals grow poorly. However any pasture established on poor soils will not equal the productivity of species planted on better soils. Lower carrying capacity and lower returns must be expected, particularly where little or no fertiliser is used.

95