1-1-1962

Delayed foliation in apple trees

J E L Cripps

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Fruit Science Commons, and the Plant Biology Commons

Recommended Citation

Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol3/iss5/16
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
DELAYED foliation refers to the late leafing out and production of small leaves by fruit trees.

However, the weak and protracted blossoming which precedes the appearance of the leaves has more serious consequences for it may lead to a reduced set of fruit. Delayed foliation follows mild winters, which do not provide sufficient chilling for deciduous fruit trees.

Mild winters occur occasionally in Western Australia and affect the blossoming of apples, pears and some varieties of stone fruit. This means that an orchardist moving among his trees in winter to assess their condition should also be watching and judging winter weather conditions.

It has been said that delayed foliation is caused by mild winters, but this is an oversimplification since temperature is not the only factor involved. Sunshine is detrimental in that it raises the temperature of the buds above that of the surrounding air.

Cold cloudy weather is the ideal for deciduous fruit trees; frosty nights followed by clear sunny days are of doubtful benefit.

Early flowering of a Granny Smith Tree at Stonerville Research Station after spraying with D.N.C. The bare trees in the background were not sprayed.
The adverse effects of delayed foliation can be greatly reduced by spraying with D.N.C. winter oil early in August. If this is not available the following mixture may be used:

- 2 pints of the sodium salt of D.N.C.
- 3 gallons superior oil.
- 100 gallons water.

In adverse seasons such as 1959-60 the control of delayed foliation can raise the crop carried by the trees to something approaching the normal level. The economic benefit is therefore simply one of ensuring a reasonable crop.

The phenomenon of delayed foliation was described in greater detail in an article by Melville and Hardisty, who did the early trials with D.N.C. Results of this work were published in the May-June 1955 issue of this Journal.

EXPERIMENTAL AIMS

The experiment to be described was designed to determine the advantages, if any, of spraying with D.N.C. every winter as compared with spraying only after very mild winters. Both these treatments were compared with the routine treatment, namely, spraying with superior oil.

The work was conducted over a period of five years to cover as many types of winter weather as possible. As in fact the winters of 1956, 57, 58, 59 and 60 included a range of weather from very mild to very cold, an indication was obtained of the conditions under which corrective treatment is necessary.

METHOD

The variety used was the Granny Smith, which is susceptible to delayed foliation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprayed with Superior Oil</td>
<td>153</td>
<td>242</td>
<td>169</td>
<td>82</td>
<td>345</td>
<td>992</td>
</tr>
<tr>
<td>Sprayed with D.N.C. only in 1959</td>
<td>161</td>
<td>231</td>
<td>159</td>
<td>201</td>
<td>317</td>
<td>1070</td>
</tr>
<tr>
<td>Sprayed with D.N.C. every year</td>
<td>155</td>
<td>218</td>
<td>230</td>
<td>82</td>
<td>352</td>
<td>1037</td>
</tr>
</tbody>
</table>

The data presented includes fruit weights following various sprays (pounds per tree) for different winter conditions.
Forty eight trees were included in the experiment which was carried out at Stoneville Research Station. All fruit harvested from the trees was weighed and a sample measured to give an indication of the benefits to be derived from the application of sprays to reduce delayed foliation.

RESULTS

The figures of average crop weights per tree in pounds per treatment and the graph summarise the results.

Fruit diameter measurements showed no worthwhile differences. Crop weight is the important factor.

DISCUSSION

The last treatment in the table above, namely the application of D.N.C. in five successive years, produced an interesting if somewhat disappointing result.

In the normal winter of 1956 and the mild winter of 1957 no significant increase in crop was recorded. However a mild winter in 1958, plus the fact that the trees were in an “off year”
gave a significant increase only to be followed by a very light crop the following year. D.N.C. thus gave two “on year” crops in succession followed by a very light crop, due in fact to a low percentage of fruit buds.

Twenty per cent. of the buds on the D.N.C. sprayed trees were fruit buds in 1959 whereas the control trees which were in a normal bearing sequence, had 41 per cent. fruit buds.

From this treatment it can be suggested that the annual application of D.N.C. is of doubtful economic advantage and that it does not prevent biennial bearing.

Thinning sprays are the obvious answer. Conversely, if D.N.C. is applied only in very mild winters, that is, winters mild enough to greatly prolong blossoming and reduce the set of fruit, a normal crop will be produced. No amount of spray thinning the previous season nor any other measure can ensure this.

Spraying in 1959 during a very mild winter increased the set of fruit from 13 fruit per 100 blossom clusters to 54 fruit per 100 blossom clusters and the weight of crop from 82 pounds per tree to 201 pounds. As 1959 was an “on year” the light crop of the unsprayed trees was due entirely to weather conditions. Bearing in mind the relative shortage of apples on the markets and the reasonable export prices offered in 1959-60 as compared with the 1960-61 season a considerable economic advantage accrued from a single application of D.N.C. in 1959.

Therefore the decision whether or not to apply D.N.C. depends entirely on winter weather conditions.

Throughout these experiments D.N.C. was applied during the first week in August, since this gives maximum results. Later application will still give some benefit.

SUMMARY AND RECOMMENDATION

In the light of the above, a grower should evaluate the weather conditions experienced during the winter at the end of July and decide whether or not measures to correct delayed foliation are necessary. If in doubt he should consult his local Horticultural Adviser or Instructor.

He should bear in mind that:
• D.N.C. is not a means of correcting biennial bearing.
• It is best utilised only when winter conditions are mild enough to reduce setting of fruit, as they were in 1959.
• The effect of D.N.C. application on fruit size is negligible.
• It gives some control of San Jose Scale.
• It should be applied during the first week in August.
THE SENSATIONAL NEW CYCLONE
COMPLETE FENCING SERVICE

Now, for the first time in Australia, the most comprehensive and useful service ever has been introduced by ‘Cyclone,’ long the leaders in Australian fencing. Here’s how it benefits you:

1. Free Advisory Service. Send coupon from your roll of “Ringlock” for free personalised advice on fencing problems or get your free copies of the new “Profit in Fencing” pamphlets from your ‘Cyclone’ Distributor.

2. Full erection instructions on the back of the colourful new label with every roll. Shows how to build the best fence in your district, and still save time and money.

3. A fence to suit any requirement. Australia’s widest range — including the new low-priced 5-line Station Country Fence and the new 8-line Boundary Fence. Plus special fences to meet particular needs.

4. Full erection services. Expert teams of ‘Cyclone’ fence erectors have been set up to cater, through Distributors, for the farmer who prefers to sub-contract his fencing.

5. Genuine ‘Cyclone’ RINGLOCK, Australia’s toughest fence by test.

6. Guarantee. Every roll of “Ringlock,” every “Red Tag” gate guaranteed by ‘Cyclone’ — the most experienced fence and gate makers.

Look for this sign identifying your authorised ‘Cyclone’ Distributor. He will gladly give you helpful advice on your fencing needs.

Made in Australia by CYCLONE COMPANY OF AUSTRALIA LTD.

Please mention the “Journal of Agriculture of W.A.” when writing to advertisers.