Evicting bees from houses

A C. Kessell

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Apiculture Commons, and the Biology Commons

Recommended Citation

Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol4/iss8/12

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.pappenfus@agric.wa.gov.au.
EVICTING BEES FROM HOUSES

By A. C. KESSELL, Apiary Inspector

EACH year the Apicultural Branch receives several inquiries from harassed house­holders about how to get rid of bee colonies which have nested in houses. Cavity walls often provide cosy quarters for swarms seeking a home, while others establish themselves in chimneys, ventilators and under floors.

The quickest way of getting rid of the bees, but one which few beekeepers care to employ, is to kill the colony by means of poisonous gases. The fumes from burning sulphur were once widely used, but this is dangerous as the fumes are deadly to humans and animals. A much better method is the use of Gammexane Smoke Generators, which are small cylinders about an inch high and ¾ inch in diameter. When ignited, these give off a dense smoke, which, although not poisonous to humans, is deadly to insects. The smoke leaves a deposit of Gammexane on the surfaces it comes in contact with and this remains lethal for some months, killing any insects which settle on it.

Methods of Use

Seal off all entrances, except one, to the bees nest to stop the bees and smoke escaping. If the bees are in a chimney, place a flat piece of asbestos cement sheeting over the top of the chimney so that the bees and smoke cannot escape (Fig 1). Also have on hand some material to block up the hole through which the smoke generator is inserted.

The smoke generator is lit by holding it in the fingers at an angle of 45° while the match is applied to the edge. When the smoke-bomb begins to burn, it produces considerable heat, so have an empty jam or tobacco tin handy and as soon as the generator starts to hiss, and smoke appears, place it in the tin and quickly push the tin through the entrance to the nest. Block up the entrance and allow the smoke to do its work. The bees that come in direct contact with the smoke will die almost immediately. Keep the nest closed up for several hours to allow the Gammexane dust to settle. The flying bees which have been away from the nest during the smoking may fly around the entrance to the nest for some hours, but if they land on any surface which the smoke has contaminated, they will also be killed.

It is advisable to avoid going too near these flying bees, as they are usually quite upset at having their home destroyed and may sting anything or anybody close at hand. All flying bees should be dead after 24 hours.

The actual smoking of the generator lasts only a few seconds, but the smoke will penetrate all the cracks and areas likely to hide bees and will settle in about two hours.

In places where it is impossible to place a generator inside the nest, some alternative methods are suggested. If it is possible to obtain an old smoker from a beekeeper, the generator may be lit and placed inside and the smoke can be puffed into the nest entrance. Once the smoker has been used for Gammexane, it is unsuitable to use again for normal beekeeping work as the Gammexane residue cannot be removed and may prove fatal if used on hives of producing bees.

The job can also be done quite well with a tin and a piece of hose. All that is needed is a part of an old hose or syphon tube and a tin with a press-in lid, such as a paint tin or powdered milk tin. Make a hole in the lid of the tin so that the hose will just push through it making a snug fit. The length of the hose will depend on the distance between where the tin can be placed and the entrance to the nest.
Fig. 1. Bees in chimney. Cover top of chimney and also cover the fireplace completely after lighting the generator.

Cover the front of the fireplace with canvas - sheet or three ply, allowing enough gap to push in smoke generator.

nest. The shorter the distance, the more efficient the extermination. Two to three feet is usually ample.

The Gammexane generator is lit and dropped into the tin, the lid is pushed on hard, and the other end of the hose quickly pushed through the hole from which the bees are flying (Fig. 2).

The smoke generated in the tin will be forced through the hose and into the nest. Let the hose remain there for at least three minutes.

Fig. 2. Burning gammexane in a tin with hose attached.
In out of the way places, such as under a verandah, in low parts of the ceiling, or where people are frightened of getting stung, the tin can be tied to a long stick or bamboo (Fig. 3) and held in position at a distance.

It must be remembered that for the best results the gas must be concentrated as much as possible for at least several minutes before being allowed to escape. If this can be accomplished, one generator is usually enough for the job, but if complete sealing is not possible and a large amount of smoke can escape, it may be necessary to use two or even three capsules; repeating the process, rather than lighting them all at once.

When using these capsules, try not to inhale the fumes given off while burning. Although they are not harmful to humans they can give one a nasty headache and a dry feeling in the throat.

While the generator is burning, a certain amount of heat is given off, so the container should be handled with caution.

The correct name for the bombs is Gammexane Smoke Generators, No. 22. They are an I.C.I. product and are obtainable from any of the stock firms in Perth.

There is little fear of ants being attracted to the empty nest, because the dead bees, combs and any honey in the nest will have been coated with Gammexane which will kill or repel the ants.

Alternative Methods

An alternative to the destruction of the swarm is to seek the aid of an experienced beekeeper. He may be able to remove some asbestos or timber from the wall or the floor and cut out the combs so that the swarm can be transferred to a box for establishment in a hive.

This method is not always suitable, but an experienced beekeeper may be able to apply a wire funnel trap. This method is easy and takes little time to set up; it saves all the bees and its only drawback is that it takes some time to complete the operation.

Equipment

The beekeeper will need hammer, nails, some short lengths of pine wood and a cone-shaped trap made from fly-wire as shown in the illustration.

The trap can be made by cutting a piece of fly-wire about 15 inches square and gradually working it into the shape of a cone. When the height of the cone is four or five inches, tack it on to a light wooden frame, then attach the frame to a piece of three-ply with a hole cut in it about six inches square (Fig. 4).
Fathers' Day

Comfort...

and Cheers!

Everything for HIM at

PARRYS DEPT. STORE

28 4841

25 Sutherland St., WEST PERTH

Journal of Agriculture Vol 4 No 8, 1963
HD-3
America's finest
40 h.p. Crawler
Tractor!

QUALITY
BUILT TO DO
THE JOB—NOT DOWN
TO A PRICE—SO YOU KNOW
THE HD-3 WILL OUTWORK AND
OUTLAST EVERY COMPETITOR!

MAIL
COUPON
FOR
FULL
INFOR­
MATION

WESFARMERS TUTT BRYANT PTY. LTD.
Railway Avenue, Bassendean, W.A.
Please send me, without obligation, more
information on the HD-3 Tractor.

NAME __
ADDRESS __

WESFARMERS TUTT BRYANT PTY. LTD.
RAILWAY AVENUE, BASSENDEN, W.A.
TELEPHONE 79 1616

Today you could buy a 40 h.p. crawler
at a lower price than the HD3 . . . but
next year, and the years after that,
you'd regret it. A tractor is an invest­
ment—and your HD3 will still be oper­
ating profitably long after others have
become a liability. This is the security
that the name ALLIS-CHALMERS gives
you. Now look at some of HD3’s terrific
features.

• Solid 6 in. x 4 in. angle steel frame.
• Heavy duty track assembly.
• Shuttle clutch (forward to reverse
 without gearshift).
• Independent steering, clutches and
 brakes.
• Big capacity hydraulics.
• Straight dozer, A/dozer, loader, rip­
 per, etc., available.

Please mention the "Journal of Agriculture of W.A." when writing to advertisers
If there is more than one entrance to the nest select the one used most by the bees and block up all the other holes by nailing scraps of fly-wire over them. When all other possible entrances are blocked, nail the funnel trap over the main entrance, with the cone pointing outward (Fig. 5).

The next step is to place a hive as close as possible to the point of the cone. The hive should contain two frames of bees with a queen and some drawn comb. If the hive has to be lifted to a high position, a block and tackle may be suspended from the roof so that the hive may be raised and lowered at will. Where this is impracticable a stand may be built on a ladder to hold the hive, or suitable supports may be fitted to hold the hive in position (Fig. 6).

When the hive has been put in place the bees may be allowed to fly from the entrance. Using the sharpened end of a pencil a small hole is made in the point of the wire cone. This hole should be just big enough to allow a worker bee to squeeze through and fly out without too much difficulty. Eventually all the flying bees will get out through the funnel and, not being able to return, will find their way into the set hive. There is no fear of
fighting in such a case as most of the flying bees will have just returned with supplies and a bee carrying food will be accepted by any hive.

Check to see that the bees are not getting back into the wall through another hole, then when everything is working perfectly, sit back and wait. It may take six or eight weeks before all the bees, including the newly emerged young bees, have left the wall. At a later date the queen may sometimes be seen trying to leave the wall after she had discovered that no supplies are coming in to feed the young bees and all her flying bees have failed to return. It is advisable to remove and destroy the queen if possible, thus hastening the operation.

Inspect the funnel periodically after about four weeks and note how many bees are coming out. When no bees have been seen to come out for some time, the funnel may be removed and the bees in the hive allowed to clean out the old wall nest. They will do this readily if there is no nectar flow at the time.

Let them rob undisturbed for a week, then one night close up the hive entrance and remove the hive to a place at least two miles away from the old site. If the new site is less than two miles away the flying bees may be inclined to return to the wall and become a nuisance.

It is best to fit the funnel trap at the beginning of spring when most hives will be short of supplies and sending out large numbers of field bees. This means that bees will leave the wall in large numbers in a short time. By the time all the bees are out of the wall the main spring flow will be nearly over and the bees will rob out the old wall nest more quickly.

SIXTH RANDOM SAMPLE LAYING TEST, 1962-63

FOURTH PROGRESSIVE REPORT TO JUNE 2nd, 1963

AVERAGE AGE OF BIRDS 310 DAYS OR 44.3 WEEKS

<table>
<thead>
<tr>
<th>Ranked in Order of Profit</th>
<th>Breed</th>
<th>Period available for Laying from 21½ weeks</th>
<th>H/H Prod. from 21½ weeks</th>
<th>H/D Prod. from 21½ weeks</th>
<th>Birds Remaining</th>
<th>Average Feed per Day per Bird from 8 weeks</th>
<th>Average Egg Weight from 21½ weeks</th>
<th>Nett Price per Dozen from 21½ weeks</th>
<th>Profit—Income less Feed Costs from 8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. B. H. Hickson</td>
<td>W/L</td>
<td></td>
<td>158</td>
<td>92-1</td>
<td>92-9</td>
<td>45</td>
<td>4-00</td>
<td>1-88</td>
<td>4-0</td>
</tr>
<tr>
<td>3. Mulvra Hatchery</td>
<td>W/L</td>
<td></td>
<td>163</td>
<td>99-8</td>
<td>100-2</td>
<td>46</td>
<td>4-00</td>
<td>1-84</td>
<td>3-8</td>
</tr>
<tr>
<td>4. D. G. Hoult</td>
<td>A/WL</td>
<td></td>
<td>162</td>
<td>97-0</td>
<td>100-1</td>
<td>42</td>
<td>4-03</td>
<td>1-86</td>
<td>3-10</td>
</tr>
<tr>
<td>5. Radio Hatchery</td>
<td>W/L</td>
<td></td>
<td>158</td>
<td>96-6</td>
<td>102-8</td>
<td>41</td>
<td>3-90</td>
<td>1-77</td>
<td>3-7</td>
</tr>
<tr>
<td>6. S. L. Porter</td>
<td>S.P.B.</td>
<td></td>
<td>158</td>
<td>98-9</td>
<td>100-1</td>
<td>45</td>
<td>3-79</td>
<td>1-76</td>
<td>3-7</td>
</tr>
<tr>
<td>7. Hamptons Poultry Stud</td>
<td>W/L</td>
<td></td>
<td>163</td>
<td>96-1</td>
<td>100-1</td>
<td>43</td>
<td>3-95</td>
<td>1-85</td>
<td>3-9</td>
</tr>
<tr>
<td>8. Wexham Hatchery</td>
<td>W/L</td>
<td></td>
<td>156</td>
<td>95-0</td>
<td>96-7</td>
<td>47</td>
<td>3-94</td>
<td>1-78</td>
<td>3-7</td>
</tr>
<tr>
<td>9. Austra Hatchery</td>
<td>W/L</td>
<td></td>
<td>159</td>
<td>87-6</td>
<td>99-2</td>
<td>47</td>
<td>3-88</td>
<td>1-85</td>
<td>3-11</td>
</tr>
<tr>
<td>10. Alonia Hatchery</td>
<td>Speedi</td>
<td></td>
<td>163</td>
<td>85-2</td>
<td>88-3</td>
<td>44</td>
<td>3-83</td>
<td>1-84</td>
<td>3-0</td>
</tr>
<tr>
<td>11. N. A. Bell</td>
<td>W/L</td>
<td></td>
<td>163</td>
<td>90-2</td>
<td>93-9</td>
<td>44</td>
<td>3-94</td>
<td>1-85</td>
<td>3-9</td>
</tr>
<tr>
<td>12. T. B. Conlon</td>
<td>W/L</td>
<td></td>
<td>163</td>
<td>88-9</td>
<td>92-4</td>
<td>44</td>
<td>3-92</td>
<td>1-90</td>
<td>3-11</td>
</tr>
<tr>
<td>13. Albany Bell Hatchery</td>
<td>W/L</td>
<td></td>
<td>162</td>
<td>91-8</td>
<td>95-1</td>
<td>45</td>
<td>4-14</td>
<td>1-88</td>
<td>3-8</td>
</tr>
<tr>
<td>14. A. Charlton</td>
<td>W/L</td>
<td></td>
<td>157</td>
<td>97-1</td>
<td>99-7</td>
<td>41</td>
<td>3-93</td>
<td>1-77</td>
<td>3-7</td>
</tr>
<tr>
<td>15. G. Hudson</td>
<td>W/L</td>
<td></td>
<td>157</td>
<td>87-0</td>
<td>88-7</td>
<td>48</td>
<td>3-84</td>
<td>1-85</td>
<td>3-9</td>
</tr>
<tr>
<td>16. K. Swannell</td>
<td>W/L</td>
<td></td>
<td>163</td>
<td>88-2</td>
<td>92-7</td>
<td>43</td>
<td>4-10</td>
<td>1-84</td>
<td>3-9</td>
</tr>
<tr>
<td>17. Albany Bell Hatchery</td>
<td>W/L</td>
<td></td>
<td>158</td>
<td>86-4</td>
<td>86-4</td>
<td>48</td>
<td>3-46</td>
<td>1-77</td>
<td>3-6</td>
</tr>
<tr>
<td>18. W. A. Cook</td>
<td>A/WL</td>
<td></td>
<td>159</td>
<td>87-2</td>
<td>90-8</td>
<td>44</td>
<td>3-88</td>
<td>1-82</td>
<td>3-8</td>
</tr>
<tr>
<td>19. M. Fawkes & Son</td>
<td>W/L</td>
<td></td>
<td>161</td>
<td>85-4</td>
<td>89-2</td>
<td>49</td>
<td>4-09</td>
<td>1-86</td>
<td>3-10</td>
</tr>
<tr>
<td>20. W. Adams</td>
<td>W/L</td>
<td></td>
<td>157</td>
<td>80-5</td>
<td>85-4</td>
<td>39</td>
<td>3-93</td>
<td>1-88</td>
<td>3-10</td>
</tr>
<tr>
<td>21. Angela Hatchery</td>
<td>W/L</td>
<td></td>
<td>157</td>
<td>79-2</td>
<td>80-6</td>
<td>44</td>
<td>3-97</td>
<td>1-90</td>
<td>3-10</td>
</tr>
<tr>
<td>22. W. A. Cook</td>
<td>Cross</td>
<td></td>
<td>160</td>
<td>87-2</td>
<td>85-4</td>
<td>48</td>
<td>3-94</td>
<td>1-86</td>
<td>3-9</td>
</tr>
<tr>
<td>23. Wexham Hatchery</td>
<td>W/L</td>
<td></td>
<td>159</td>
<td>80-5</td>
<td>84-1</td>
<td>44</td>
<td>3-96</td>
<td>1-78</td>
<td>3-7</td>
</tr>
<tr>
<td>24. D. G. Hoult</td>
<td>W/L</td>
<td></td>
<td>162</td>
<td>77-7</td>
<td>84-4</td>
<td>35</td>
<td>3-83</td>
<td>1-88</td>
<td>3-9</td>
</tr>
<tr>
<td>25. Chalmers Hatchery</td>
<td>W/L</td>
<td></td>
<td>161</td>
<td>70-4</td>
<td>87-2</td>
<td>30</td>
<td>3-78</td>
<td>1-81</td>
<td>3-9</td>
</tr>
<tr>
<td>26. H. Woodard</td>
<td>W/L</td>
<td></td>
<td>159</td>
<td>75-4</td>
<td>82-3</td>
<td>40</td>
<td>3-85</td>
<td>1-80</td>
<td>3-7</td>
</tr>
<tr>
<td>27. B. & H. Cole</td>
<td>A</td>
<td></td>
<td>161</td>
<td>78-8</td>
<td>80-1</td>
<td>47</td>
<td>4-08</td>
<td>1-83</td>
<td>3-8</td>
</tr>
</tbody>
</table>

Control W/L 156 59-3 64-3 41 3-33 1-73 3-5 1-6

Test Average Excluding Control ... 160 88-2 91-6 43-2 3-93 1-83 3-9 8-6