Phosphate requirements of rice in the Ord River Valley

Rijn P J Van
A. L. Chapman

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Agronomy and Crop Sciences Commons, and the Comparative Nutrition Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol5/iss1/10

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
Phosphate Requirements of Rice in the Ord River Valley

By P. J. VAN RIJN* and A. L. CHAPMAN*

A three-year experiment on the initial and maintenance phosphate requirements of wet-season rice was carried out at Kimberley Research Station between 1960 and 1963. Application of 2 cwt. per acre superphosphate as the first application on new land, followed by annual application of 1½ cwt. per acre is recommended.

ON the Kununurra clay soil of the Ord River valley, phosphate fertiliser is required for all crops.

For rice, early experiments showed the need for approximately 2 cwt. per acre superphosphate as the initial application on new land (Langfield 1961), but the amount required annually to maintain the yield of subsequent rice crops was not known. In 1960-63, a three-year experiment was carried out at Kimberley Research Station to determine more precisely the initial phosphate requirement and also to establish the annual maintenance application for wet-season rice.

Methods

The variety used was Meli No. 2, grown from November to May each year. During the intervening dry seasons the land was maintained as a clean fallow. In the first season on new land superphosphate was applied at the rates of 0, 2, 4, and 8 cwt. per acre. In the second season, the residual value of these applications was compared with fresh applications of 0, 1, 2, and 4 cwt. per acre on new land. In order to determine subsequent annual requirements, ½, 1, and 2 cwt. per acre were superimposed on earlier applied dosages of the previous two seasons. In addition to the various phosphate applications, each crop received 2 cwt. per acre ammonium sulphate.

The design used was a partially balanced scheme with four replications. Each plot was 70 ft. x 14 ft. sown, fertilised and harvested mechanically.

Response on New Land

From the results it has been possible to construct a yield response curve to applications of superphosphate on new land (Fig. 1).

* Division of Land Research and Regional Survey, CSIRO, Kimberley Research Station, Kununurra

Journal of Agriculture Vol 5 No 1 1964
At least \( \frac{1}{2} \) cwt. per acre is required to establish the crop. The yield rises sharply as the application is increased to 2 cwt. per acre, but at this level yield is over 95 per cent. of the maximum, and heavier dressings give little further response.

**Response to Maintenance Applications**

Using this value, it is possible to predict approximately the expected average yield of successive rice crops receiving different applications of superphosphate. Beginning with an initial dressing on new land of 2 cwt. per acre, the expected average yields are:

<table>
<thead>
<tr>
<th>Annual Super Dressing (cwt./ac.)</th>
<th>Expected Rice Yield (lb./ac.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,680</td>
</tr>
<tr>
<td>1½</td>
<td>2,910</td>
</tr>
<tr>
<td>2</td>
<td>2,950</td>
</tr>
</tbody>
</table>

At present prices for rice and superphosphate, 1½ cwt. per acre each year is the most economical level. These yields were obtained with Meli No. 2, the standard variety at the start of the trial. It has since been replaced by Sircna, a variety of higher yield and quality.

It is probably safe to assume that these results would apply also to a cropping system of continued dry-season rice. However, it is not known at present to what degree the results are applicable to irrigated crops grown on the Ord River under non-flooded conditions—cotton, safflower, or linseed. A similar experiment with cotton is due to begin in 1963-64.

**ACKNOWLEDGMENTS**

The assistance of Mr. G. A. McIntyre, Division of Mathematical Statistics, C.S.I.R.O., in the interpretation of the field data is gratefully acknowledged. Thanks are due to Mr. L. Arends, Technical Assistant, for field assistance.

**REFERENCES**

SERVICE AND SATISFACTION GUARANTEED

Simpson

Servants

AMPLE PARKING

Full Range of Quality Products

PARK AND SHOP AT PARRYS

ENQUIRY COUPON  Write to us for any information you would like on prices and terms and you will have a reply by return mail.

I would like details of ........................................

Name........................................ Address........................................

Sutherland Street

Please mention the "Journal of Agriculture of W.A.," when writing to advertisers
Get maximum mileage from your truck, utility and tractor tyres


DO BUSINESS WITH

Beaurepaire's
The Tyre TECHNICIANS

Branches throughout —
VICTORIA, NEW SOUTH WALES, QUEENSLAND,
SOUTH AUSTRALIA, WESTERN AUSTRALIA,
TASMANIA

NEW TYRE SALES
BEAURECAPS
BATTERY SALES
AND SERVICE

Please mention the "Journal of Agriculture of W.A." when writing to advertisers