Poison plant problems

T E H Aplin
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
A POISON plant may be defined as a plant which, when eaten by humans or animals, exerts harmful effects or causes death by virtue of its toxic substances.

The definition is quite clear, and the effects of a great many poison plants are indeed just that. If stock eat enough of the poison plant they become sick or they die.

Examples of highly toxic poisonous plants are the toxic species of Oxalobium and Gastrolobium, Cape Tulip and the Thornapples.

With a large number of other plant species, however, the definition can only be accepted with certain reservations. Toxic manifestations caused by these plants may be sporadic or rare, and often there is nothing to suggest that the plants are toxic at all.

Poison plants, unlike metallic or organic poisons are extremely variable in their reactions, and often complex in their mode of action. Their nature is determined by several inter-acting factors, and their toxic substances may appear only under specific sets of conditions.

Some of the factors that have a bearing on the toxicity of species are:
- Heredity.
- Soil moisture relationship.
- Temperature.
- Light.
- Age of plant.
- Soil type.

Heredity as a factor in determining the toxic levels of plants is shown by Subterranean clover; some strains contain higher levels of oestrogenic substances than others.

Different varieties of sudan grass and soursob have also been shown to contain different amounts of toxic material. This explains why certain poison plant species are more toxic in different localities or why sometimes plants growing next to one another have different toxicity levels.

Soil moisture relationship must also be considered in poison plant investigations. Toxic principles within a plant are not always fixed in any one part of the plant, but may be translocated by sap flow. Favourable soil-moisture conditions usually favour toxicity since there is a flush of new growth or a rise in sap. The role that toxic principles play in the metabolism of a plant and the translocation of these toxic materials is governed by the physiology of the plant. This plays an important part in determining the varied patterns of toxicity within the plant itself.

Temperature, light and age of the plant also affect the physiology of the plant. Each has an important bearing on the rate of transpiration and the rate of photosynthesis. These in turn determine the overall toxicity or distribution of toxic material within the plant.

Soil type can be significant in determining whether a plant is toxic or not. It is usually considered that better class soils favour toxicity and there is a thought that alkaloid-producing plants are usually associated with soils having a favourable nitrogen status.

Selenium toxicity is associated with soils in which this element is available to certain plants.

Toxicity in plants capable of producing prussic acid is quite complex. Here the
prussic acid is held as a harmless substance (called a glycoside) by a sugar molecule. It is released in the presence of a key substance, an enzyme, which is found only at certain times, either in the plant itself or in some other plant. Poisoning by prussic acid producing plants is therefore sporadic. Until all the factors governing the release of prussic acid are known, it is extremely hard to predict when such plants become toxic.

Palatability

The palatability of a plant known to be toxic can also be used to determine whether it is harmful or not. Palatability however can change from season to season or according to how hungry stock are. Heavy losses may sometimes result from stock eating harmful quantities of poison plants which they do not usually touch.

Plant-Fungi Association

There are some plants in which the toxic principle is not produced by the plant itself but by fungi associated with the plant. Ergotism and facial eczema are two notable manifestations due to this association. The plant acts as the vehicle for the ingestion of the toxic principle and should therefore be incriminated with the fungus as the cause.

Farmers Can Help

There is still much to be learnt about the causes underlying the toxicity of poison plants.

Farmers who lose stock in mysterious circumstances and suspect a poison plant are therefore urged to write immediately to the Department of Agriculture. They should set out the circumstances of the losses and submit specimens of plants they suspect are the cause.
KILL THE RUST
while you paint, with

Usher's

"IRNKOTE"

There's an Irnkote product
to treat any stage of rust

"IRNKOTE" RUST KILLER (CLEAR)
A powerful Rust Inhibitor with terrific penetrating power, gets right into pit holes, totally neutralising the rust on badly corroded surfaces.

"IRNKOTE" INHIBITED PRIMER (GREY)
Contains 15% of the Clear Rust Killer, which is sufficient to neutralise moderately rusted surfaces and is used where it is desired to kill rust and undercoat surfaces in one operation.

"IRNKOTE" ROOF and STRUCTURAL PAINT (RED and GREEN)
A durable, fadeless paint containing 4% Rust Killer which is capable of neutralising mild rust.

"IRNKOTE" ALUMINIUM - ROOF and STRUCTURAL PAINT
A particularly heavy-bodied Silver Paint, containing 2lb. of fine aluminium powder per gallon, plus Resin and Oil.

"IRNKOTE" BLACK COMPOUND
For the protection of the Interior of Iron and Cracked Cement Tanks, Troughs, Roofs, Guttering, Parapets, etc. A heavy-bodied compound. Amazingly easy to apply with a soft brush. Is non-poisonous and will not taint drinking water.
Covering Capacity: One gallon covers a 1,000 gallon tank.

"IRNKOTE" PLASTIC COMPOUND
For the repairing of Leaky Iron and Cement Tanks, Troughs, Roofs, Guttering, etc. Non-poisonous and easy to apply with a putty knife.

DISTRIBUTORS:

DALGETY - N.Z.L.

AUSTRALIA'S MOST ACTIVE PASTORAL COMPANY

Please mention the "Journal of Agriculture of W.A." when writing to advertisers

Journal of Agriculture Vol 5 No 1 1964
STOCK ENCLOSURES

made easy with

DOWNEE

PRESSED STEEL RAIL FITTINGS

Cut costs by specifying DOWNEE pressed steel fittings for the erection of: cowsheds and milking stalls, cattle pens, abattoirs, warehouse and storage sheds, workshop fittings, etc. Downee does away with the old fashioned and unsatisfactory method of screw joints and welding, which are more subject to corrosion.

Downee fittings are manufactured from high quality steel to standard gas and water pipe sizes. Being galvanised they are suitable for permanent outdoor use. Structures made with Downee can be dismantled and the pipes and fittings re-used for other purposes. For full details contact McPherson's.

From your local storekeeper or

McPherson's LTD.

SUPPLIERS TO INDUSTRY SINCE 1860

532 MURRAY ST., PERTH. PHONE 23 0211.

Please mention the "Journal of Agriculture of W.A." when writing to advertisers