1-1-1964

Establishing wheatbelt pastures? Don't use a cover crop

J A C Smith
D. B. Argyle

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Other Plant Sciences Commons, and the Plant Pathology Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol5/iss3/2

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
Establishing wheatbelt pastures? Don't use a cover crop

Cover Page Footnote
Grateful acknowledgment is made of the help of the staff of the Merredin Research Station in carrying out this trial. For thoughtful criticism of the project, particular thanks are given to Mr. A. J. Reany, Cereal breeder, and to Mr. S. D. Byrne, Manager.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA’s research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA’s archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA’s research library website, DAFWA’s main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA’s research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.

This article is available in Journal of the Department of Agriculture, Western Australia, Series 4: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol5/iss3/2
Establishing wheatbelt pastures?

- DON'T USE A COVER CROP

One of the factors which influence the establishment of improved pasture in the West Australian wheatbelt is whether the pasture legume is sown with a cover crop or not. Mediocre establishment can follow when a cover crop is used and it is recommended that, for rapid establishment, any pasture legume should be sown without a cover crop.

By J. A. C. SMITH, Agricultural Adviser, Merredin, and D. B. ARGYLE,* Rural Officer, Commonwealth Bank, Perth

A DENSE, productive stand of pasture in the first year should be a major objective in wheatbelt pasture establishment.

There are a number of good reasons why first year pastures should be dense and productive. Among these are:

- Only such pastures are capable of setting enough seed to give worthwhile regeneration in the second and subsequent years.
- Unless pasture growth is dense and vigorous, soil fertility will not be raised nor will carrying capacity be lifted.
- Because most of the Western Australian wheatbelt is cropped every three years, pasture growth in the intervening non-cropping years must be good if it is to do its job in the limited time available.

If cover crops are not used, liberal seeding rates, good initial weed control, choice of the right legume species, inoculation with the correct nodule-forming bacteria, adequate fertiliser application and proper

*Sown without a cover crop both commercial and Cyprus barrel medics produced dense, vigorous stands in the second year, with Cyprus giving the best result.
grazing almost always combine to give dense productive pastures in the first year. With the introduction of pasture legumes suited to lower rainfall areas in the Western Australian wheatbelt, it is necessary to examine critically the validity of the Department of Agriculture recommendations for successful pasture establishment for these new environments. The recommendation to sow improved pastures without a cover crop was examined at the Merredin Research Station during 1962.

MERREDDIN TRIAL

Part of the Merredin Research Station is situated on heavy land typical of many of the heavy soils of the eastern wheatbelt where barrel medics thrive if properly managed. Commercial barrel medic has been successfully maintained there for some years.

During 1962 an experiment was sown to test the influence cover crops have on the establishment of commercial and Cyprus barrel medics. The soil type was a grey gimlet clay, which is inclined to be structureless.

Heavy and light cover crops were used. The heavy cover crop was wheat sown at 40 lb. per acre and the light cover crop was wheat sown at 10 lb. per acre.

Both medic varieties were sown at 6 lb. of seed per acre and the seed was inoculated and lime-pelleted.

After the opening rains which fell late in May, the site was cultivated sufficiently to achieve weed control normal for wheat cropping. The inoculated and lime-pelleted medic seed was sown together with the cover crop at a depth of 1 inch. The trial was sown mid-June.

Over the May to October growing period 776 points of rain fell, compared with the average growing period rainfall of 817 points. The annual total for the year was 1,064 points, which was more than an inch less than the annual average of 1,180 points.

In January, 1963, the plots were sampled at random, using four-square-link (1 link x 4 link) quadrats or sampling areas. All

Graph 1.—The tremendous depression of seed production due to the presence of a cover crop is illustrated in this diagram. Even a light cover crop greatly reduced seed yield, although the reduction was less in the early maturing Cyprus barrel medic than the commercial strain.

A heavy cover crop (40 lb. wheat per acre) reduced seed production so that second year stands were sparse. Cyprus was less affected than commercial barrel medic.
burrs within each quadrat were collected, counted and hand threshed. The average number of burrs per square link for each treatment was determined as well as the average number of seeds per burr. Clean seed yield was calculated from the weights of threshed seed. Shrivelled, small seed was kept separate to find the extent of the production of non viable seed.

Results
The presence of a cover crop markedly depressed the production of seed by both strains of barrel medic. This is shown in the Table.

The first diagram (Graph 1) shows how cover crops reduced seed yields in the first year medic pastures at Merredin. The other graphs show the effects of cover crops on the main components of seed production by the legumes—the number of burrs produced (Graph 2) and the number of seeds per burr (Graph 3).

The proportion of shrivelled non viable seed produced by either Cyprus or commercial barrel medic was insignificant and did not vary with different treatments.

During the winter of 1963 the plots were grazed continuously to suppress volunteer grass growth. Medic growth in the second year reflected markedly the amount of seed set the previous year.

The "no cover crop" plots were vastly superior to either the "light cover crop" or "heavy cover crop" plots. The "no cover crop" second year stands were the only pastures that could be classified as dense and vigorous, and therefore acceptable as suitable by farmers.

IMPLICATIONS FOR PASTURE ESTABLISHMENT
Several important points arise out of the results of the experiment which have an important bearing on pasture establishment in the lower rainfall areas of the West Australian wheatbelt.

(1) Cover crops, even when lightly sown, have a marked deleterious effect on the seed set of first year medic pastures. By inference the
Dairy Farmers:
Want a dairy cleanser that's sure, safe, easy to use and more economical than other detergents?

Golden Fleece
Superwash

A Dairy Supervisor tested Superwash and in his report found it to be superior to other detergents. It was easier to use for cleaning all dairying equipment—from teat cups to milk cans. It washed away all odours quickly and surely, leaving the dairy clean and refreshed and all at a lower cost. Get your supplies of Superwash from your local Golden Fleece Agent.

Superwash cleans safely, surely, and at a low cost
A product of H. C. Sleigh Limited
Today you could buy a 40 h.p. crawler at a lower price than the HD3... but next year, and the years after that, you'd regret it. A tractor is an investment—and your HD3 will still be operating profitably long after others have become a liability. This is the security that the name ALLIS-CHALMERS gives you. Now look at some of HD3's terrific features.

- Solid 6 in. x 4 in. angle steel frame.
- Heavy duty track assembly.
- Shuttle clutch (forward to reverse without gearshift).
- Independent steering, clutches and brakes.
- Big capacity hydraulics.
- Straight dozer, A/dozer, loader, ripper, etc., available.
same effect can be expected when planting subterranean clover on light soils. This has been observed on trials and on farmers' properties often enough for the conclusion to be reached that the sowing of any cover crop when establishing legume pastures in lower rainfall areas places the legume in an extremely hazardous position.

(2) Under favourable conditions both Cyprus and commercial barrel medic are capable of producing large quantities of seed. Cyprus is even better than commercial. Here it must be appreciated that it is up to the grower to provide the favourable conditions.

(3) Cyprus barrel medic is capable of withstanding harsher conditions than commercial barrel. This is evidenced by Cyprus's ability to set more seed per burr, more burrs, and more seed per acre under identical conditions.

ESTIMATING SEED YIELDS

To get a reasonably accurate estimate of how much seed has been set per acre by a barrel medic pasture it is necessary to measure the number of burrs set in a measured area, then determine the average number of seeds per burr.

Once this has been determined a good rule of thumb for working out seed yield is that two seeds per square foot is equivalent to 1 lb. of seed per acre.

For example, 100 burrs per square foot each containing an average of six seeds is equivalent to 300 lb. of seed per acre.

THE EFFECT OF COVER CROPS ON SEED PRODUCTION BY FIRST YEAR BARREL MEDIC

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>No. of Burrs per square link</th>
<th>No. of Seeds per Burr</th>
<th>Viable Seed per acre</th>
<th>Non-Viable Seed per acre</th>
<th>Total Seed per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Cover</td>
<td>Commercial Barrel medic</td>
<td>73</td>
<td>6.8</td>
<td>334.1</td>
<td>13.0</td>
</tr>
<tr>
<td>Cover Crop</td>
<td>Cyprus Barrel medic</td>
<td>78.5</td>
<td>7.3</td>
<td>493.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Light Cover</td>
<td>Commercial Barrel medic</td>
<td>1.1</td>
<td>2.5</td>
<td>1.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Cover Crop</td>
<td>Cyprus Barrel medic</td>
<td>14.4</td>
<td>6.3</td>
<td>40.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Heavy Cover</td>
<td>Commercial Barrel medic</td>
<td>0.4</td>
<td>1.3</td>
<td>0.4</td>
<td>—</td>
</tr>
<tr>
<td>Cover Crop</td>
<td>Cyprus Barrel medic</td>
<td>1.4</td>
<td>5.8</td>
<td>4.9</td>
<td>—</td>
</tr>
</tbody>
</table>

Conclusion

This trial has confirmed the recommendation that cover crops should not be used in pasture establishment in the Merredin district, representing the lower rainfall areas of the West Australian wheatbelt.
Because pasture establishment must be rapid to make pasture worth growing, cover crops of any sort should not be used. The only possible exception may be on light sandy soils liable to blow. Under these conditions some seed set will have to be sacrificed by allowing a light cover crop to be grown for the purpose of reducing wind blast. From 5 to 10 lb. of a cereal should be enough to reduce wind blast.

As pointed out at the beginning of this article, whether a cover crop is used or not is only one of the factors which influence the success of pasture establishment. Others are just as important and unless all are taken into account, money may be wasted.

ACKNOWLEDGMENTS

Grateful acknowledgment is made of the help of the staff of the Merredin Research Station in carrying out this trial. For thoughtful criticism of the project, particular thanks are given to Mr. A. J. Reany, Cereal Breeder, and to Mr. S. D. Byrne, Manager.

REFERENCE

THE LATE BRIAN CARLIN

The Journal of Agriculture records with deep regret the sudden death of Mr. B. F. Carlin, agricultural adviser in the Department of Agriculture’s Wheat and Sheep Division at Bridgetown, on January 29 this year.

Brian Frederick Carlin was born in 1927. He served in the R.A.N. before entering the University of W.A., from which he graduated with the degree of Bachelor of Science in Agriculture in 1951. He joined the Department of Agriculture’s Wheat and Sheep Division in 1952 and served as agricultural adviser at Mt. Barker and Moora before being posted to Bridgetown.

At Moora he took a leading part in the work on light land development in the West Midlands, which has been instrumental in the development of a big area of land in this district.

He was posted to Bridgetown in 1959 to serve the increasing number of farmers in the higher rainfall areas engaged in sheep raising and cereal growing. As a result of his work in these areas he became widely known throughout the State for his advocacy of improved husbandry methods, particularly set stocking at higher stocking rates, spring lambing and autumn shearing. His work with farmers had a marked effect on sheep management in these districts. This influence will undoubtedly continue well into the future.

Brian Carlin was an enthusiastic extension worker who gained the respect of farmers and his professional colleagues for his practical and imaginative approach to his job. He was considered one of the Department’s most able agricultural advisers. He was a fluent writer, making good use of the written word in his extension work through many articles published in the Journal of Agriculture as well as other publications. At the time of his death he was preparing a comprehensive article on set stocking for the Journal of Agriculture. This will be published in a future issue.

Brian Carlin was survived by a wife and three children.
Get to the ROOT of your pasture problems

LIME-COATED Clover Seed

Provides the answer to poor nodulation of legume roots.

Now more effective than ever with the new sticker **METHOCHEL**

ORDER TREATED SEED NOW

Barrow Linton's seed treatment service now employs the new seed sticker METHOCEL which is recommended by the Department of Agriculture. Methocel is a cellulose gum product which does not melt or become sticky in hot weather, prevents leaching of the coating, yet permits proper germination. Order your lime coated clover seed now, ready inoculated if desired.

SUPPLIES OF METHOCHEL

You can obtain supplies of Methocel from Barrow Linton's. Also Calcium Powder and Clover Inoculants.

OTHER PASTURE SEEDS TOO!

All varieties of pasture seed are obtainable from Barrow Linton's. Order now to ensure delivery when required.

763 Wellington St., Perth — 21 9151

Please mention the "Journal of Agriculture of W.A.," when writing to advertisers.