Dry season rice varieties for the Ord River Valley

A L. Chapman

P. J. Van Rijn

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Agronomy and Crop Sciences Commons, and the Plant Breeding and Genetics Commons

Recommended Citation
Chapman, A L. and Van Rijn, P. J. (1964) "Dry season rice varieties for the Ord River Valley," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 5 : No. 4 , Article 9.
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol5/iss4/9

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
Dry season rice varieties for the Ord River Valley

Cover Page Footnote
The authors wish to thank Mr. R. P. Harington, Manager of the Kimberley Research Station and Mr. L. Arends, Technical Assistant, for field assistance.
Dry Season Rice Varieties for the Ord River Valley

By A. L. "CHAPMAN* and P. J. VAN RIJN*

This article gives the results of three rice variety and time of planting experiments carried out at Kimberley Research Station in the 1960, 1961, and 1962 dry seasons. The recommendation is to sow the variety Caloro during May.

PREVIOUS experimental work at the Kimberley Research Station (Langfield 1961) showed that, in general, indica varieties of rice are best adapted for wet-season sowing and japonica varieties for dry-season sowing.

In a detailed time of planting study, Langfield and Basinski (1960) found that the outside limits for sowing japonica varieties were April and July. This article describes three experiments carried out at Kimberley to compare a group of available japonica varieties and to determine more closely the optimum time of planting.

Methods

The experiments were:

EXPERIMENT 1 (1960): The varieties Caloro, Calrose, Fujisaka No. 5, and Hungarian No. 1 were sown on July 8-9 with 4 cwt. per acre ammonium sulphate and 2 cwt. per acre superphosphate on a randomised block design with six replicates.

EXPERIMENT 2 (1961): The varieties Caloro, Calrose, Fujisaka No. 5, and Colusa 180 were sown at three dates, May 11, June 12, and July 12, with 2 cwt. per acre urea and 2 cwt. per acre superphosphate. The three plantings were made in separate bays; within each bay the varieties were arranged in a randomised block design with four replicates.

EXPERIMENT 3 (1962): The varieties Caloro and Calrose were sown at two dates, May 17 and June 25, with 2 cwt. per acre urea and 2 cwt. per acre superphosphate.

The plantings were made in separate bays; within each bay the varieties were arranged in a randomised block designed with four replicates.

The experiments were drill sown, using standard agronomic techniques. The plots were four rows of 50 ft. with no pathways left between plots. Three plots were sown together in the same drill run. The two centre rows of each replication of each variety were hand harvested and threshed for yield measurement.

Results and Discussion

The results are given in Table 1. Comparing varieties, in Experiment 1, Caloro and Hungarian No. 1 significantly outyielded Calrose and Fujisaka No. 5. Hungarian No. 1 is an early variety and showed a tendency to lodge; with mechanical harvesting, yields could be expected to be lower. Furthermore, in this and an earlier experiment, the variety carried a high proportion of sterile spikelets. For these reasons it was discarded and Colusa 180 substituted in Experiment 2.

In Experiment 2 taking the mean of all plantings, Caloro and Calrose significantly outyielded Fujisaka No. 5 and Colusa 180. Caloro and Calrose gave the highest yields when planted in mid May, Fujisaka No. 5

* Division of Land Research and Regional Survey, CSIRO, Kimberley Research Station, Kununurra

241
performed best when planted in mid June, although its yield was not appreciably higher than that of Caloro. Colusa 180 yielded slightly better when planted in mid June than in mid May.

In Experiment 3 there was no significant difference in mean yield between Caloro and Calrose; the Calrose variety gave a slightly higher yield at the first planting and a slightly lower yield at the second. Averaging all years and all plantings, the yield advantage of Caloro over Calrose just attained significance at the 5 per cent. level.

Because of site effects little attention can be paid to differences in yield between years. Experiment 1 was conducted in a bay which had been planted only once before and where the weed population was low. Experiment 2 was carried out in bays which had been cropped for some years, but where weed infestation was moderate. The bays of Experiment 3 were, however, very heavily infested with weeds and consequently yields were lower than normal.

However, within years, in 1961 and 1962, when the varieties were planted at different dates, there was a decline in yield of Caloro and Calrose with plantings made after mid May. In these experiments, mid May plantings of both varieties were in ear 106 days after emergence, mid June plantings in 90 days and mid July plantings in 75 days.

The provisional practical recommendation is therefore to sow Caloro in May.

ACKNOWLEDGMENTS

The authors wish to thank Mr. R. P. Harington, Manager of the Kimberley Research Station and Mr. L. Arends, Technical Assistant, for field assistance.

REFERENCES

TABLE 1
COMPARATIVE YIELD OF RICE VARIETIES, 1960-62
(lb. per acre)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Season</th>
<th>Varieties</th>
<th>Time of Planting</th>
<th>Mean</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>May</td>
<td>June</td>
<td>July</td>
</tr>
<tr>
<td>I</td>
<td>1960</td>
<td>Caloro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calrose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fujiwara No. 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hungarian No. 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1961</td>
<td>Caloro</td>
<td>3.913</td>
<td>3.913</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calrose</td>
<td>2.717</td>
<td>2.717</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fujiwara No. 5</td>
<td>1.516</td>
<td>1.516</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colusa 180</td>
<td>2.149</td>
<td>2.149</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1962</td>
<td>Caloro</td>
<td>2.078</td>
<td>2.078</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calrose</td>
<td>2.904</td>
<td>2.904</td>
<td></td>
</tr>
<tr>
<td>Mean of all plantings</td>
<td></td>
<td>Caloro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calrose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N.S. Not significant at P = 0.05
* Significant at P < 0.05
** Significant at P < 0.001

242
In grasscutting, nothing equals the

BRITISH BUILT

Hayter "6'14" Rotary Grasscutter

With its 14 foot cutting width, extreme efficiency and complete reliability, THE HAYTER 6/14 ROTARY GRASS CUTTER has no equal. At a tractor speed of 5 m.p.h. cutting rate is approximately eight acres an hour. It comprises a centre p.t.o. unit to cut 6 ft. wide, to which may be added a flexible 4 ft. 'wing' attachment to either or both sides, thus giving a choice of cutting widths of 6 ft., 10 ft., or 14 ft. Complete flexibility is assured over the full 14 ft. cutting width on undulating ground.

Hayter Rotamower

The Hayter Rotamower is an entirely new and revolutionary 5' 6' mower designed on the rotary principle to cut and ted green crops of either hay or silage in one operation. A light airy windrow is left, convenient for follow on implements. Among a host of other jobs this versatile machine will tackle pasture topping, bracken cutting, stubble cutting and general grassland reclamation.

Full details from the Australian distributors:
BARROW LINTON PTY LTD
763 Wellington Street, Perth, W.A. Phone 21 9151

Sheaf your Hay with the

LIGHTBINDER

The famous JF Lightbinder, made in Denmark and widely used in 35 countries throughout the world, is now available in Australia. Its light weight and extreme simplicity of operation make it the popular choice wherever binders are used. Chain drives and elevator canvas are dispensed with. Power is distributed solely by gear wheels which are set in oil bath.

Please mention the "Journal of Agriculture of W.A." when writing to advertisers
HALT DAMAGE FROM RUST

"IRNKOTE"

KILLS RUST WHILE YOU PAINT

There is an "IRNKOTE" product to beat any stage of rust:

"IRNKOTE" RUST KILLER (CLEAR)
A powerful Rust Inhibitor with terrific penetrating power, gets right into pit holes, totally neutralising the rust on badly corroded surfaces.

"IRNKOTE" INHIBITED PRIMER (GREY)
Contains 15% of the Clear Rust Killer, which is sufficient to neutralise moderately rusted surfaces and is used where it is desired to kill rust and undercoat surfaces in one operation.

"IRNKOTE" ROOF and STRUCTURAL PAINT (RED and GREEN)
A durable, fadeless paint containing 4% Rust Killer which is capable of neutralising mild rust.

"IRNKOTE" ALUMINIUM - ROOF and STRUCTURAL PAINT
A particularly heavy-bodied Silver Paint, containing 2lb. of fine aluminium powder per gallon, plus Resin and Oil.

"IRNKOTE" BLACK COMPOUND
For the protection of the Interior of Iron and Cracked Cement Tanks, Troughs, Roofs, Guttering, Parapets, etc. A heavy-bodied compound. Amazingly easy to apply with a soft brush. Is non-poisonous and will not taint drinking water.
Covering Capacity: One gallon covers a 1,000 gallon tank.

"IRNKOTE" PLASTIC COMPOUND
For the repairing of Leaky Iron and Cement Tanks, Troughs, Roofs, Guttering, etc. Non-poisonous and easy to apply with a putty knife.

Your local DALGETY-N.Z.L. man has all these "IRNKOTE" products.