The pruning of fruit trees: deciduous fruit trees (apricots)

H R. Powell

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Horticulture Commons, and the Plant Biology Commons

Recommended Citation

Powell, H R. (1964) "The pruning of fruit trees: deciduous fruit trees (apricots)," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 5 : No. 4 , Article 11.

Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol5/iss4/11
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website
(researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although
reasonable care was taken to make the information in the document accurate at the time it was first
published, DAFWA does not make any representations or warranties about its accuracy, reliability,
currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or
misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the
information before making the document available from its research library website. Before using the
information, you should carefully evaluate its accuracy, currency, completeness and relevance for your
purposes. We recommend you also search for more recent information on DAFWA's research library
website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and
sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the
circumstances of individual farms, people or businesses, and does not constitute legal, business,
scientific, agricultural or farm management advice. We recommend before making any significant
decisions, you obtain advice from appropriate professionals who have taken into account your individual
circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western
Australia and their employees and agents (collectively and individually referred to below as DAFWA)
accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of
information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
APRICOTS are grown in this State mainly for the fresh fruit market. Varieties commonly grown include Newcastle Early, Royal, Ouillins Early, Blenheim, Moorpark, Trevatt and Tilton.

In some orchards the trees are regularly pruned (see Fig. 133), but in others they are left unpruned (see Fig. 134). Unpruned trees are given some renovation pruning from time to time.

Generally, all varieties have the same spreading habit of growth and in favourable locations the unpruned trees grow very large and live for many years.

THE ANNUAL WOOD GROWTH

The annual wood growth consists of wood shoots, fruit shoots, fruit and leaf twigs, fruit spurs, leaf spurs and water shoots. A general description of these parts was given in Part 1 and the treatment of wood shoots and water shoots was outlined in Part 2. As the components of the annual wood and fruit spurs have specific functions on apricot trees some detailed knowledge is necessary if they are to be satisfactorily pruned. In many respects the fruiting system of these fruit trees is similar to the fruiting systems of peach and plum trees, described previously.

The general term lateral, refers to the weaker and more horizontal growth. Although one type of growth may merge into another, there are a number of well defined types. These are:—

Fig. 133.—Aged apricot trees annually winter pruned, in the orchard of Mr. A. R. Dowell, Bedfordale. The advantages of annual pruning include easier picking and spraying and control over the supply of fresh fruiting wood. The author can be seen on the left.
Fig. 134.—Aged apricot trees that have been unpruned for many years. The annual fruiting wood is on the extremities of the branches and picking and spraying operations are made difficult.

Wood Shoots

These are strong growing, upright shoots essential for the extension of the leaders and the formation of subsidiary leaders when necessary. Secondary lateral growth is common on the more strongly growing shoots. Flower buds often in clusters are associated with the leaf buds, but they are of no value for fruit production (see Figs. 138 and 140).

Fruit Shoots

These weaker shoots are the main fruit bearing parts of the tree. Their length varies with the age and vigour of the tree and they are usually inclined to the horizontal in growth. They are fully clothed with leaf buds and should they be pruned, new growth can be expected to take place from the leaf buds nearest to the pruning cuts. On many varieties each leaf bud is associated with two or more flower buds, but on others the flower buds are only found towards the ends of the shoots (see Figs. 135, 136 and 138).

Fig. 135.—Apricot Laterals: On the left is shown a fruit twig characterised by the flower buds being placed singly along its length and a leaf bud at its extremity. These twigs should not be pruned unless they are too numerous; then the surplus should be cut back to the basal buds. On the right is a fruit shoot, the most valued of all the annual wood. At each node there are clusters of three to six buds. They are flower buds with the exception of the small grey inconspicuous leaf bud in the centre. The suggested pruning is indicated. On some varieties the flower buds are restricted to the extremities of the shoots and consequently allowance must be made for this at pruning time. The pruning of early varieties is similar to the short pruned peach varieties. (See Figs. 44 and 45.)
Here's the money-making way to store FEED OATS until you need them

Two 2,000 bushel Lysaght All Purpose Silos installed at Blayney, N.S.W. for the storage of feed oats.

There are recorded cases where oats have been stored in Lysaght Silos for 8 and 9 years — then brought out when needed and when prices were at their peak. There are also cases where Lysaght Silos, used in this way, have shown their owners a better financial return than wool. That is why more and more farmers are building up substantial batteries of Lysaght All Purpose Silos, recognising them as one of the soundest and most practical investments available today.

- Full-size “walk-in” door (silos from 1,200 bushels upwards) enables silos to be emptied and cleaned quickly and effortlessly.
- Centre and side filling holes complete with hinged lids and positive fastenings.
- Fully rodent-proof construction.
- Faster, faster, cheaper erection.
- Vertically rigidised walls and 6-ply horizontal ribs for added strength.
- Robust positive-action bagging outlet complete with quick-release bag holder and steel hood.
- Auger Chute in bottom bulkhead behind the door.

LYSAGHT

AMERICAN TYPE FLAT FLOOR SYSTEM

ALL PURPOSE SILOS

* Patent Pending No. 55007/59

<table>
<thead>
<tr>
<th>Nominal Capacity</th>
<th>Steel Silo</th>
<th>Steel Earth Ring (Opt. Extra)</th>
<th>Steel Floor (Opt. Extra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 Bushels</td>
<td>£93</td>
<td>£11 10 o 0</td>
<td>£31</td>
</tr>
<tr>
<td>1,200 Bushels</td>
<td>£172</td>
<td>£22 0 0</td>
<td>£31</td>
</tr>
<tr>
<td>2,000 Bushels</td>
<td>£240</td>
<td>£22 0 0</td>
<td>£31</td>
</tr>
<tr>
<td>3,100 Bushels</td>
<td>£318</td>
<td>£31 10 0</td>
<td>£47</td>
</tr>
<tr>
<td>3,700 Bushels</td>
<td>£349</td>
<td>£31 10 0</td>
<td>£47</td>
</tr>
</tbody>
</table>

* The 500-bushel Silo is not equipped with a door. Price includes steel floor.

JOHN LYSAGHT (AUSTRALIA) LIMITED

8 Pakenham Street, Fremantle, W.A.

Manufactured by: John Lysaght (Australia) Limited, Special Products Division, Newcastle Works.

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.
Parents are reminded that applications for 1966 admission to Muresk Agricultural College close on December 31 of this year. A preliminary selection of 1966 entrants is made after the Junior results are available early in 1965.

The successful applicants then continue with Sub-Leaving, or higher studies at secondary school in 1965.

Before the course can be commenced applicants must have studied:

Junior—
(a) English; Maths A; Maths B.
(b) Physics and Chemistry; (or Science A and Science B).
(c) Book-keeping, if possible.
(d) Others such as Geography.

Sub-Leaving—English; Maths A; Physics; Chemistry and others.

Some prefer to take Junior Book-keeping in Sub-Leaving.

Places still exist for 1965 commencement. They are filled in order of application during 1964, by qualified applicants.

Duration of Course—Two years.
Fees—Approximately £200 per annum covering full residential charges.
Scholarships—Department of Agriculture (3), the “Countryman”, and J. J. Poynton Memorial (2).
Boarding Allowance—Most Muresk students are eligible for the Education Department Boarding Allowance (£50 per annum).

Full details of the College are obtainable from the Principal, Muresk Agricultural College, Muresk, W.A., or the Department of Agriculture, Jarrah Road, South Perth.

BETTER - CHEAPER - EASIER FARMING

WITH

DEUTSCHER
A Post Hole Borer, £48 10s.
B Power Hacksaw, £32 5s.
C Saw Gulleter—
48 in. Saw, £24 15s.
72 in. Saw, £49 10s.
D Rotary Scythe—
24 in. Self Propelled, £152.

FARM MASTER
A Post Hole Borer, £42 10s.
B Post Hole Digger, £128.
C Mower Blade Grinder, £15.
D Slashers—
3 Point Linkage, £92 10s.
Trailing, £129 10s.

ALCON PUMPS
Close Coupled to Petrol Engine—
1 in. with 2.5 H.P., £62.
1½ in. with 2.5 H.P., £65.
1¼ in. with 3 H.P., £67.
2 in. with 3 H.P., £76.
Also Full Range of Long Coupled and Belt Driven Pumps up to 6 in. with Petrol or Diesel Engines.

Cut out this advertisement, mark the unit in which you are interested and post for full particulars and service to

Maynard Wright PTY.LTD
609 WELLINGTON STREET, PERTH. 21 8103.

Please mention the “Journal of Agriculture of W.A.” when writing to advertisers.
Fruit Twigs

These growths are weaker and more twig-like than the fruit shoots. They also differ from the fruit shoots in that the flower buds are placed singly and the leaf buds are usually found at the extremities of the twigs. If the terminal leaf bud is removed by pruning the twig will be unable to grow and mature any fruit and will eventually die. When too numerous the twigs should be thinned out and cut back to basal buds (see Figs. 135, 137 and 141).

Fig. 136.—The base of a fruit shoot enlarged to show the arrangement of the buds at each node

Fig. 137.—Apricot Laterals: On the left is a two year old lateral, consisting of a fruit shoot previously left unpruned, and the annual extension, consisting here of a modified fruit shoot with most of the characteristics of a fruit twig. Fruit spurs have developed towards the base of the lateral. If suitable annual wood is available on the leader or sub-leader this growth should be cut back to its base. If not, no pruning is necessary. On the right is a three year old lateral originally left as a fruit shoot. The annual growth consists of fruit twigs and a fruit spur on the left, just below the topmost fruit twig. The extent of pruning will depend on the amount of suitable annual wood available as mentioned above. If retention is necessary, the topmost portion could be removed at the junction of the fruit twig on the right.
Leaf Twigs

These twigs are similar in growth to the fruit twigs but all the buds are leaf buds. They are usually found on weak or shaded portions of the tree.

Secondary Lateral

When a fruit shoot is pruned back or left unpruned, the subsequent growth produced during the following growing season from one or more leaf buds, are known as secondary laterals. They are also formed on strong wood shoots during the current season's growth (see Figs. 137 and 138).

Fruit Spur

These short spur-like growths, bearing flower buds, like modified fruit twigs, are more common on some varieties than others. They are of value for fruit production especially on the shy bearers (see Fig. 137).

Leaf Spur

Leaf spurs like modified leaf twigs have no flower buds and are of little value for fruit production. When numerous, they indicate weakness in the growth of the tree.

Flower Buds

These buds are easily picked out, being larger and plumper than the centrally placed leaf buds. They are often found in clusters in association with the leaf buds. Should a flower bud develop it will give rise to a single fruit.

Water Shoots

These are strong vigorous growths arising from dormant buds and are caused by too severe pruning treatments or the loss of branches by breakages.

TREATMENT OF THE ANNUAL WOOD

Hard unintelligent pruning will cause stunting of the tree and delay cropping. Most of the annual growth consisting of strong wood shoots and some water shoots, will have to be cut away at the next pruning. Growth will be dense and any suitable laterals will be too shaded to develop properly.
The Nifty, Thrifty, Thirty

This one's on its own... distinctively different from any you've ever seen.

Here's Massey-Ferguson's new surprise package — the MF30... a neat, compact, high-quality Ferguson System tractor that's unique in its power class.

It comes with a high-torque, 4-cylinder, indirect injection 27 B.H.P. diesel engine with plenty of power and flexibility. The high performance of this engine is coupled with amazing wheel grip. Balanced weight distribution and an extremely sensitive hydraulic system that ensures a high and constant degree of weight transference combine to create a field performance out of all proportion to its size. And for those greasy conditions a diff lock is fitted as standard.

Other MF30 standard equipment features include: dual clutch; live rear P.T.O. with engine and ground drive speeds; engine drive centre P.T.O. for operating mid-mounted mowers; single-lever Ferguson System hydraulics with draft, position, response and automatic compensating rate of lower control; linkage transport lock; 8 forward speeds and 2 reverse with synchromesh on 3rd, 4th, 7th and 8th; foot throttle; 10 gallon fuel tank and 10 or 11 x 28 rear tyres.

There's much more to the MF30. But why not see it for yourself... better still, put it through its paces on your farm. There's one ready to go right now.
Be ready to meet this hazard with efficient "REGA" and "FINSBURY" fire fighting equipment.

Finsbury Self-Primming Pumps

Australia's fastest self-primming pumps, used extensively for emergency fire fighting and general pumping. 1½ in. model guaranteed self-primming at 25 ft. vertical suction lift in 30 seconds and an output of 6,000 gallons per hour. For fire fighting gives up to 50 ft. water throw. Price: £27 plus hoses and fittings.

2 in. SSP/B medium self-primming pump with an output of 13,500 gals. per hour. 25 ft. suction lift. Heads to 160 ft. Fast diffuser priming. Pressure of 65 p.s.i. when using 2-60 ft. lengths of 1 in. fire fighting hoses, equipped with 5/16 in. nozzles 65 ft./70 ft. water throw. Price £112 plus hoses and fittings.

Tractor Fire Fighter

Price £7/10/6.

Knapsack Fire Fighter

Galvanised £6/13/4.
Brass £8/18/6.

For friendly, individual, on-the-spot service

High Pressure Fire Fighter Pump Sets

Finsbury Red Jacket 200 FCJM direct coupled to a 4 h.p. Briggs & Stratton engine. Performance at 3,600 r.p.m. gives a hard hitting stream up to 95 ft. at 90 p.s.i. water throw. Price: £115 plus hoses and fittings.

Water Carting Tanks

Available in many sizes to suit all requirements.

Elders - GM

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.
Fig. 140.—Part of last season’s leader extension together at the base with a small portion of the previous year’s extension. In this example the annual wood growth consisted of two well developed wood shoots, and two fruit twigs just below them. On the older wood there are four two year laterals. It is obvious that the previous season’s pruning was too severe, causing a dearth of fruiting wood and an excess of growth in the formation of the strong wood shoots.

Should trouble be experienced in coping with strong growth on vigorous trees, even with the more lenient treatments, the leaders should be left untipped until some stability has been reached.

Leader Extensions—Current Season

Stage 1.—The leaders are extended each year by suitable wood shoots and other competing wood shoots are suppressed. The length of the extension will usually vary between one third and one half the length of the wood shoot selected for the extension (bearing in mind the principles mentioned in Part 2). When there is room they can be utilised as sub-leaders (see Figs. 139 and 141).

Leader Extensions—Older Wood

Stage 2.—During the following season’s growth, buds on the leader extension will develop according to the manner in which the previous winter pruning was carried out. If it was too severe, most of the buds will produce strong wood shoots (see Fig. 140). If the pruning was more realistic the topmost buds will develop into wood shoots, and the lower ones into fruit shoots and fruit twigs (see Fig. 138).

At the next winter pruning the leader extension will be selected and competing wood shoots either removed or shortened back to prevent competition with the leader extension.

When room is available, suitably placed wood shoots can be used to start sub-leaders. (See Fig. 139.)

With trees more or less normally pruned, the degree of shortening back of any fruit shoots will depend upon the variety; Newcastle Early for example, bears consistent...
Fig. 142.—An older part of the apricot leader shown in Fig. 140. This is a good example of a variety that does not freely produce fresh fruiting wood on the framework branches. All the laterals are either two years or three years old and the annual wood is confined to the lateral extensions. (See Fig. 137.) Attempts have been made previously to returnish new growth. This is shown by the evidence of the old pruning wounds on the leader and the small branch "arm" on the left.

crops and the fruit shoots can be treated in much the same way as short pruned peaches. (See Figs. 44 and 45). Other varieties tend to be more temperamental and react to their environment and previous growing conditions to a greater extent. With these varieties the pruning of fruit shoots should be done with more caution. (See Figs. 141 and 143). Under favourable conditions the fruit shoots can be shortened back to about six inches. (See Fig. 135). Surplus shoots can be cut back to the basal buds to stimulate the new growth of similar shoots.

Fig. 143.—The example shown in Fig. 142, pruned. The stronger laterals have been retained for next season's fruit crop. Where possible, attempts have been made to rejuvenate new growth. This will be noticed particularly with the lateral, middle right, the small branch or arm, on the right and the lateral just above the arm. Obviously weak laterals have been removed and this can be seen top left and bottom right.

Fruit twigs should not be shortened back, as the removal of the terminal leaf buds will cause the death of the twigs. Should there be too many they should be thinned out in the same way as the surplus fruit shoots.

During the following season's growth, fruit should be produced from the fruit shoots and fruit twigs, and these shoots will continue their growth on similar lines to those shown in Figs. 44 and 137.

New growth, too, will come from dormant buds on the leader extension and from basal buds of shoots and twigs removed at the previous pruning. If the previous
Pruning had been too severe there will be the possibility of stronger growth. Wood shoots and water shoots with their strong growth will tend to shade and weaken the desirable fruiting laterals. This will, of course, indicate more lenient treatments at the next pruning.

The treatment at the next pruning will depend on the results obtained. Wood shoots, if not needed for the replacement of framework branches, may have to be cut back to the basal buds. If they have to be retained owing to the shortage of suitable fruiting wood they should be well shortened back to an underneath bud.

The treatment of the fruiting wood will always depend upon the supply of new fruiting wood on the leaders and the requirements of the variety concerned. If enough new growth is available more of the older fruiting wood can be removed, but if not, care will be needed to make sure that enough of it is retained for satisfactory cropping. It should be borne in mind that fruit is only carried on the annual wood produced during the previous season’s growth. The annual extensions on the fruit shoots and fruit twigs left unpruned generally become weaker each successive year. Every opportunity should be taken to encourage the supply of suitable new growth. (See Fig. 143).

Some varieties, particularly Newcastle Early, tend to over-crop. To some extent over-cropping tendencies can be reduced at pruning time, by removing a larger proportion of the fruiting wood. However a proper appreciation of what to leave and what to cut out can only be obtained by experience. Under normal conditions there will always be a need to hand thin these crops early enough to ensure satisfactorily market returns. Particulars of spray thinning Newcastle apricots in association with some hand thinning are contained in Department of Agriculture Bulletin No. 2642.