Control of Prodenia litura on cotton in the north of Western Australia

P N. Forte
D. G. Shedley

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4
Part of the Agronomy and Crop Sciences Commons, and the Entomology Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol6/iss1/13

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
CONTROL OF PRODENIA LITURA ON COTTON IN THE NORTH OF WESTERN AUSTRALIA

By P. N. FORTE, B.Sc. (Agric.), Senior Entomologist and D. G. SHEDLEY, B.Sc. (Agric.), Entomologist

COTTON is subject to considerable insect attack at the new Ord River irrigation area in the East Kimberleys of Western Australia.

Although a long list of insects have been recorded as damaging cotton in this area there are two which have proved so far to present the biggest problem. These are Heliothis punctigera and Prodenia litura.

The first of these can be controlled by weekly spraying with a mixture of 4 ozs. of Endrin and 8 ozs. of D.D.T. per acre. This spray mixture serves quite well to control Prodenia litura in the 1st and 2nd generations, but has little effect on the later generations in any one season. This phenomenon has also been observed in the U.S.A. on both Heliothis species and the Boll Weevil but no satisfactory explanation has been put forward for it.

In the later generations it is therefore necessary to change to a more effective insecticide and the one so far proved and recommended is Dipterex.

Many other new insecticides have been tested and are under test and results of extensive work in the field and the laboratory where more than 50 insecticides or combinations were tested, showed that very few were in any way effective in controlling Prodenia.

Dipterex at 2 to 2¹/₄ lb. per acre gave good control of most cotton pests. However, several new insecticides look as if they could be very useful for the control of Prodenia itself but have little effect on the other cotton pests.

A field trial conducted on the 1963-64 summer crop of cotton at Kununurra and using a new organic phosphate compound American cyanamide No. 43064 showed such promise in controlling Prodenia that it was decided to make a further trial with it on a winter crop of cotton.

This article describes this trial and shows the other insecticides used. Two appear to be as good as or better than Dipterex but further large scale trials should be conducted before firm recommendations can be given.

TECHNICAL NOTES

September Trial
A 50-acre second cycle cotton crop at Kununurra showed a heavy infestation of Prodenia larvae following a moth flight and egg laying in late August.

Plots 1 chain square were selected in this area.

The insecticides were applied—
(1) Using a power operated pump and hand lance at the volume of 80 gallons per acre.
(2) Using a power operated air blast knapsack and blower at the volume of 6⁵/₈ gallons per acre.

Owing to the late stage of growth of the crop and staff and equipment problems it was not possible to carry out a replicated experiment or to test the effect of repeated spray applications.
Insecticides Tested

The materials tested and amounts of active ingredients per acre were as follows:

43064—1 lb., 0.5 lb., 0.25 lb.
Dipterex E.C.—2 lb., 2.5 lb.
Dipterex S.P.—2 lb., 3 lb.
Bidrin—15 oz.
Bayer 5080—2 lb.
Thiodon 2 lb.
Heptachlor—2 lb.
Phosdrin 10 oz.

Plots treated with the last four insecticides listed were little if any better than untreated plots. Dipterex S.P. at 3 lb. and 5 lb. was applied mainly as a test of phytotoxicity. No serious harmful effects were observed on the plants.

Sampling

The plots were sampled by moving a 20 in. square tray along between two rows and knocking larvae off the cotton plants onto the tray. A 50 ft. length was sampled each day and the insects were returned to the row from which they were taken after counting. At least three days elapsed between counts on the same rows.

Comparison between the above sampling technique and direct counts of Prodenia on 50 ft. of row showed that counts were higher with the tray technique. (Table 1).

Results

Results for the first seven days of the most effective treatments are shown in Table 2. Counts on some plots were continued for a further 10 days. There was no increase in numbers of insects on the 43064 and Bidrin plots.

Discussion

The results indicate that large field sprayings should be conducted to compare these three insecticides for effective control of Prodenia under farming conditions. It should not be overlooked that both 43064 and Bidrin are highly toxic organic phosphate compounds but that

<table>
<thead>
<tr>
<th>Days After Spraying</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Average of 4 plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>43064 1 lb.</td>
<td>14</td>
<td>6</td>
<td>4</td>
<td>1-5</td>
<td>0-75</td>
<td>1</td>
<td>0-5</td>
<td>" " 2 plots</td>
</tr>
<tr>
<td>" ½ lb.</td>
<td>21</td>
<td>22</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>" " 1 plot</td>
</tr>
<tr>
<td>" ⅙ lb.</td>
<td>14</td>
<td>22</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>" " 3 plots</td>
</tr>
<tr>
<td>Dipterex EC 2½ lb.</td>
<td>17</td>
<td>12</td>
<td>14</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>" " 2 plots</td>
</tr>
<tr>
<td>" 2 lb.</td>
<td>16</td>
<td>21</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>" " 1 plot</td>
</tr>
<tr>
<td>Bidrin 15 oz.</td>
<td>18</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>" " 2 plots</td>
</tr>
<tr>
<td>Control</td>
<td>31</td>
<td>54</td>
<td>43</td>
<td>29</td>
<td>27</td>
<td>17</td>
<td>14</td>
<td>" " 3 plots</td>
</tr>
</tbody>
</table>

Table 1.—Live larvae per 50 feet of row on 10/9/64

Table 2.—Number of live larvae
they could remain effective longer than Dipterex.

There seemed to be little difference between the results from the high and low volume applications.

For identification the three chemicals concerned are as follows:

1. Dipterex manufactured by Bayer = Dylora = Trichlorphon.

2. 43064 is American Cyanamid experimental insecticide formula 2-(Diethoxyphosphino Thioylimino)-1.3 dithiolane.

Now! 1 Pump does 2 jobs!

BLASTS FIRES
FILLS TANKS

125 P.S.I.*
WITH 3/16" NOZZLE!

6,600 G.P.H.
WITH 5ft. SUCTION!

FIRE QUENCHER!

Here now is the perfect firefighting combination! The South Pacific FIRE QUENCHER gives you all the pressure you need to blast tree-top fires and fog spray ground fires . . . plus a handy high volume output for other jobs such as tank filling and de-watering.

2 STAGES, with twin impellers placed back-to-back give greater efficiency, guarantee a smoother-running pump.

SELF PRIMING and completely trouble free. Most dependable pump you'll ever own.

DIRTY WATER is no problem. Handles mud and grit better than any other firefighter.

The South Pacific Fire Quencher is approved by firefighting authorities. We'll gladly demonstrate its unmatched performance.

MAIL COUPON

WESFARMERS TUTT BRYANT PTY. LTD.
Railway Avenue, Bassendean, W.A.
Please send me, without obligation, more information on the "FIRE QUENCHER"

NAME __
ADDRESS __

We are also W.A. Distributors of REX SELF PRIMING PUMPS—Australia's best-selling, most complete pump range.

WESFARMERS TUTT BRYANT PTY. LTD.
RAILWAY AVENUE, BASSENDEN, W.A.
TELEPHONE 79 1616

* Test figures obtained using 60 ft. 3 in. discharge hose.