1-1-1965

Slime moulds [Replaced by Farmnote 114/77]

Department of Agriculture, Western Australia

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Other Plant Sciences Commons, and the Plant Pathology Commons

Recommended Citation
Department of Agriculture, Western Australia (1965) "Slime moulds [Replaced by Farmnote 114/77]," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 6 : No. 4 , Article 13.
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol6/iss4/13

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
SLIME MOULDS

By The Plant Pathology Branch

DURING autumn and spring, yellow or grey masses of slimy or powdery material suddenly appear on the blades of lawn grass and other low-growing plants and render them unsightly. The organisms responsible are known as slime moulds.

Characteristics

Slime moulds occur as patches of watery, white or yellow, jelly-like, slimy material which covers the surface of the soil, pasture, lawns, fallen leaves or mulch on garden beds. In time the jelly-like material changes to distinct fruiting bodies which are commonly ash grey but, in some instances, are bright yellow or red in colour. These fruiting bodies usually occur in great numbers on the affected plant material and may cover an area of several square feet.

Life Cycle

The organisms survive from one season to the next as microscopic spores which are very resistant to desiccation. These spores germinate under cool, moist conditions and give rise to a jelly-like material which creeps over the soil or surface vegetation. At maturity the moulds move onto the grass, leaves, twigs, etc., and rapidly change into the commonly-observed spore-bearing dry structures.

The spores are dispersed by wind, rain splash, animals, insects and other agencies.

Damage to Plants

Most slime moulds live on dead organic matter or feed on other micro-organisms. The species found on lawns, shrubs and other low growing plants are not parasitic. In some instances, however, they may smother plants or cause them to look unthrifty.
Control

In the normal course of events slime moulds will disappear on the return of hot dry weather. They may be brushed or hosed away but if they return year after year they can be controlled by spraying with a suitable fungicide such as Captan, Phaltan, Thiram or Zineb. (Couch, 1962).

Reference

WEED CONTROL

CONTROL OF SOURSOB

(Oxalis pes-caprae)

Soursob is becoming more widespread in the agricultural areas of this State, particularly in the Avon Valley. It is almost invariably confined to the heavier soils and tends to favour moist conditions. The leaves are not unlike those of subterranean clover but the yellow flowers are very different and the plants are not closely related. The production of large numbers of underground bulbs and tubers enables the plant to survive and spread. It has not been known to set seed in Western Australia.

Soursob has proved fairly resistant to chemicals and no highly effective herbicide is economical for large scale treatment. Small areas can be eradicated (at a cost in excess of £50 per acre) by the application of monuron at 30 lb. per acre. Eight ounces of monuron in one gallon of water is sufficient to treat 50 square yards of infestation. This treatment will render the ground sterile for up to three years but will prevent small areas from becoming large infestations.

Where larger areas are involved it is not possible to recommend a treatment which will eliminate the weed. The most effective has been 2 lb. acid equivalent of 2,4,5-TP per acre, applied when the growing bulbs are exhausted, usually about mid May to early June. This usually coincides with the appearance of the first few flowers. No more than 80 per cent. control can be expected from a single treatment as the bulbs germinate progressively through the season and are not all susceptible at the same time. Repeated treatment for a number of years could be expected to give better control. The chemical 2,4,5-TP should not be confused with the more widely known 2,4,5-T.

Cultural treatment has also been effective in reducing plant density. Cultivation to the depth of the bulbs should be undertaken at the stage of old bulb exhaustion. This must be sufficient to bring the bulbs to the surface. A second, light cultivation to dry out any bulbs not previously affected should be given about six weeks later. Additional treatment is undesirable. Affected areas should be treated as a unit to avoid spreading bulbs to clean sections. Where possible pasture or crop should be sown immediately after the second working.

—J. G. Paterson.
AT LAST—WIPE OUT DOUBLEGEE AND DOCKS WITH ‘BANEX’*

Proved in Western Australia. "BANEX" positively wipes out young Doublegees and Docks. "BANEX" mixes easily in hard or soft water, can be sprayed through normal high or low volume spray equipment. Spray early to wipe out Doublegees with "BANEX". Remember, Docks and Doublegees reduce yields in cereal crops, ruin pastures and poison stock.

* BANEX CONTAINS DICAMBA

IMPERIAL CHEMICAL INDUSTRIES OF AUSTRALIA & NEW ZEALAND LTD.