Control of lice on poultry

B R. Vale
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
CONTROL OF LICE ON POULTRY

By B. VALE, M.D.A., Field Technician, Poultry Branch.

DURING February and March of 1965 some particularly heavy body lice infestations were found on fowls in both deep litter and cage units in Western Australia. In some instances comparatively new laying cage units were involved. The most seriously-affected flocks showed marked unthriftiness and depressed egg production.

In many cases of severe infestation, the birds had been transferred to laying cages at ages ranging from six to twelve weeks after having been reared on wire floors or in deep litter units. The lice were not noticed until the pullets reached the point of lay, and in all instances the flocks comprised a large proportion of very backward birds. It is accepted that a thrifty bird is more able to cope with lice infestation, and this was supported as the backward birds were the most severely infested. On these birds in particular the body lice were spread extensively over the body, ranging from the tail and abdomen to under the wings, and extensive damage to the skin was apparent.

Although lice are not considered to be a major problem in the poultry industry, cage farmers in particular are advised to examine their flocks thoroughly at regular intervals as the build up of lice may be very rapid. Two factors contributing to this are first, birds in cages are unable to clean themselves because of debeaking, which is most advisable when birds are closely confined with more than one bird to a cage, and second, the birds are unable to bath themselves in litter or sand.

Laying cage farmers sometimes buy their replacements as started stock, and on odd occasions this has led to infestation of the older stock. Farmers who buy started pullets should thoroughly check the young birds on arrival, or preferably the pullets should be examined on the grower’s farm.

Species of Lice Affecting Fowls

About 40 species of lice are known to attack poultry, but the five most prevalent are the wing louse *Lipeurus caponis* (L.), body louse *Eomenocanthus stramineus* Nitz., head louse *Lipeurus heterographus* Nitz., fluff louse *Goniocotes gallinae* (De Beer) and shaft louse *Menopon gallinae* (L.)

Of these five, the body louse has been involved in all the recent outbreaks and is by far the most common species affecting poultry in Western Australia.

Life Cycle and Description

Poultry lice are wingless parasitic insects, and are host specific being unable to live away from their particular host for more than three to five days. Their mouth parts are located on the underside of the head and are adapted for biting. Apart from the irritation caused...
by the insects moving over the body, considerable damage is done to the scales of the skin and the base of the feathers as the lice feed. The lice have six legs provided with claws to facilitate movement amongst the feathers of the bird.

Lice do not suck blood, but the scales of the skin are lifted in heavy infestations, and in scratching or endeavouring to clean itself, the bird may cause blood to be drawn and scabs to form on the skin. In these severe cases a loss of production and restricted growth results.

The warm, humid conditions of the autumn months are most suitable for lice reproduction. However outbreaks are not uncommon throughout the remainder of the year.

Eggs are laid in clusters, and are held together by a sticky secretion, which also attaches them to the feathers or quills. Over a period of about three weeks the eggs may accumulate to form clusters, one to two inches in size on a group of several feathers, or as small colonies on individual feathers. A single pair of lice may produce 100,000 descendants in two to three months.

The young lice or "nymphs" hatch out in five to eight days and although smaller, closely resemble the adults. After feeding and shedding the skin (moulting) several times over a period of three to four weeks, the lice are fully grown.

The adults, generally yellow and sometimes with black markings, are elongated and flattened and about 1/8 in. to 3/16 in. long.
Insecticides

Numerous insecticides are available for lice control and some of the more common are listed below. All are reported to be effective, provided the manufacturers' recommendations are followed and the operation is performed efficiently.

MALATHION, 0.5 per cent. spray applied directly to the birds in the cages, or 1 per cent. sprayed onto the walls and floors of deep litter sheds.

A 0.5 per cent. solution can be made by mixing one part of a 50 per cent. miscible oil in 100 parts of water. A 1 per cent. solution can be made by mixing one part of a 50 per cent. miscible oil to 50 parts water.

Poultry tick and red mite may be killed by using a 3 per cent. solution made from one part of miscible oil to 17 parts of water.

MALATHION DUST, 4 to 5 per cent. applied directly to the birds or to the litter and nest boxes.

BENZENE HEXACHLORIDE (B.H.C.), 0.5 to 1 per cent., applied liberally with a brush to the perches.

D.D.T., 1 per cent., applied as litter dust baths and in the nests.

NICOTINE SULPHATE, 40 per cent., (Black leaf 40) applied by brush or as a thin trail on the perches about half an hour before the birds roost.
The nicotine sulphate treatment should be repeated within 14 days, as there is little or no residual action. It should be applied on a still night so that the fumes are not dispersed through the shed, but there should be adequate ventilation because excessive fumes may kill some birds.

When using dusts or sprays avoid contaminating the feed or water, as most insecticides are toxic, particularly in excessive quantities.

Control Measures in Brief . . .

- Inspect the flock regularly for the presence of lice. Often persistent scratching and “preening” is an indication.

- Examine several birds each time as light infestations can be easily missed.

- Inspect all stock brought onto the property.

- Treat all adult birds on the farm when lice are found.

- For the safety of the operator and the flock follow the manufacturers’ directions when using insecticides.

- Do not contaminate feed or drinking water with insecticides.

References

POULTRY?
You can get more meat and more eggs from poultry on AUROFAC* Aureomycin feed supplement. AUROFAC ensures healthy birds which will produce more eggs over a longer period and more meat of a higher quality—on the same amount of feed.

CATTLE?
AUROFAC in your herd's feed increases milk production in cows, accelerates growth rate in calves, puts extra flesh on beef animals. Losses are reduced—feed bills cut. Healthy cattle make farming easier and more profitable.

PIGS?
Pigs on AUROFAC make the most efficient use of their feed, and reach their full growth potential in less time and at reduced feed costs. Litters on AUROFAC are healthier, with far lower losses than those without supplementation.

reduce costs — increase profits with

AUROFAC*
Aureomycin feed supplement

Aureomycin (Chlortetracycline), the antibiotic in AUROFAC, keeps your animals in top physical condition. Good health ensures that all food consumed by the animal is used profitably in the production of eggs, milk or in flesh development. Food wastage is eliminated, feed bills are decreased—and your profits rise.

Ask your feed or veterinary products supplier, or send the coupon, for your FREE manual describing the step-by-step

COORDINATED FEED-HEALTH PROGRAMME

POST THIS COUPON FOR YOUR FREE MANUAL

To Cyanamid—D.H.A. Pty. Limited, care P.O. West Footscray, Victoria

Please send me a free copy of the

CHICKEN D DAIRY CATTLE D SWINE D

Coordinated Feed-Health Programme Manual (tick whichever required).

NAME

ADDRESS

Please mention the "Journal of Agriculture of W.A.,” when writing to advertisers