How to measure the capacity of farm dams

G Gauntlett
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
A short lesson in geometry explains . . .

how to measure the capacity of farm dams

By G. GAUNTLET, B.Sc. (Agric.), Adviser, Irrigation Branch.

At some time or another nearly every farmer needs to be able to measure the capacity of an ordinary farm dam of the "excavated earth tank" type and many requests are made for a method of calculating this volume. This article describes how this can be done.

In its simplest form the farm dam can be regarded as a prismoid.

A prismoid is a solid bounded by two parallel planes and by sides which are plane surfaces extending from one end plane to the other.

On reasonably level country the volume of a dam is given by the prismoidal formula which is—

\[V = \frac{D \times (A_1 + 4A_m + A_2)}{6} \]

where

- \(V \) = volume in cubic feet
- \(D \) = depth in feet
- \(A_1 \) = area of top surface in square feet
- \(A_m \) = middle area in square feet
- \(A_2 \) = area of bottom in square feet.

To convert to gallons, multiply by \(\frac{6}{1} \) and to convert to cubic yards, divide by 27.

As an illustration of the use of the formula consider the dam in Fig. 1 with the following dimensions:

- Top length = 90 feet
- Top width = 70 feet
- Bottom length = 30 feet
- Bottom width = 10 feet
- Depth = 10 feet
- Area of top = \(90 \times 70 = 6,300 \) square feet
- Area of bottom = \(30 \times 10 = 300 \) square feet

The slope or batter of the side of the dam is 3 : 1. This means that there is a horizontal displacement of 3 relative to a vertical distance of 1.

At a depth of 5 ft. at the centre of the dam there will be a horizontal displacement of 15 ft. This occurs on both ends of the dam so that the length of the middle section is \(30 + 15 + 15 = 60 \) ft. Similarly the width of the middle section is \(10 + 15 + 15 = 40 \) ft. Therefore, the area of middle section = \(60 \times 40 = 2,400 \) ft.

Substituting these values in the formula:

\[V = \frac{10 \times (6,300 + 4 \times 2,400 + 300)}{6} \]

\[= \frac{10 \times 16,200}{6} \text{ cubic feet} \]

\[= 2,700 \text{ cubic feet} \]

Fig. 1.—Dam with regular sides

Journal of Agriculture, Vol 6 No 9 1965
162,000
\[\frac{27,000}{6} = 27,000 \text{ cubic feet}\]
27,000
\[\frac{1,000}{27} = 1,000 \text{ cubic yards}\]

A word of warning is necessary here: It is necessary to ensure that all measurements are in the same unit—in this case feet and cubic feet. To compute the middle area it is wrong to take the average of the top and bottom areas.

The estimation of the middle area involving the batter of the dam may prove awkward to those who are not used to calculations. However the formula can be used in the following modified form:

1. Multiply the length by breadth of the top area.
2. Multiply the length by breadth of the bottom area.
3. Multiply the sum of top and bottom lengths by the sum of the top and bottom widths.
4. Add these results together; multiply by the depth and divide by 6.

Reverting back to Fig. 1.

Area of top \(90 \times 70 = 6,300 \text{ sq. ft.}\)
Area of bottom \(30 \times 10 = 300 \text{ sq. ft.}\)
Sum of top and bottom lengths \(90 + 30 = 120 \text{ ft.}\)
Sum of top and bottom widths \(70 + 10 = 80 \text{ ft.}\)
\(120 \times 80 = 9,600 \text{ sq. ft.}\)
Total = 16,200 sq. ft.
\[\text{V} = \frac{10 \times 16,200}{6} = 27,000 \text{ cubic feet}\]

Fig. 2.—Dam with irregular sides

4. Add together width of both ends at the bottom and divide by two for the average bottom width.
5. Multiply the average top length by the average top width.
6. Multiply the average bottom length by the average bottom width.
7. Multiply the sum of the top and bottom average lengths by the sum of the top and bottom average widths.
8. Add the last three results together; multiply by the depth and divide by 6 for cubic feet.

The procedure is illustrated in the example in Fig. 2.

Average top lengths \(\frac{90 + 92}{2} = 91 \text{ ft.}\)
Average top widths \(\frac{90 + 70}{2} = 80 \text{ ft.}\)
Average bottom length \(\frac{30 + 32}{2} = 31 \text{ ft.}\)
Average bottom width \(\frac{10 + 20}{2} = 15 \text{ ft.}\)
Average top length \(\times\) Average top width \(\left(91 \times 80\right) = 7,280 \text{ sq. ft.}\)
Average bottom length \(\times\) Average bottom width \(\left(31 \times 15\right) = 465 \text{ sq. ft.}\)
Sum of average top and bottom lengths \(\times\) Sum of average top and bottom widths \(\left(122 \times 95\right) = 111,495\)

Total sum 7,280
465
11,590
\[\frac{19,335}{6}\]

Then \(\text{V} = \frac{19,335}{6} \times 10 \text{ cubic feet}\)
\[= 32,225 \text{ cubic feet}\]
\[= 1,193.5 \text{ cubic yards}\]
\[= 201,406 \text{ gallons}\]

Where a dam is built on a considerable slope care should be taken to take the top measurement along the line of water level. However, slopes are rarely great enough to affect this measurement appreciably.
MONO

PUMPS

and

WATER PRESSURE SYSTEMS

FOR

IMMEDIATE SERVICE—

THE FULL RANGE OF

ALL MONO TYPES —

IMMEDIATE AVAILABILITY OF

GENUINE SPARE PARTS —

24 HOURS’

CONTINUOUS SERVICE

CONTACT

the Company’s own

W.A. Headquarters —

MONO PUMPS (AUST.) PTY. LTD.

664A MURRAY ST., PERTH. 21 7684

After Hours, 26 3062; 71 5437

MP65.403W.