Pasture seed production, 1966: statistics and comments

B J. Quinlivan

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Agronomy and Crop Sciences Commons, Marketing Commons, and the Plant Biology Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol7/iss11/2

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact library@dpird.wa.gov.au.
PASTURE SEED PRODUCTION, 1966

Statistics and comments

By B. J. QUINLIVAN, Adviser, Biological Services Division

THE marketing of pasture seeds differs from that of some other primary products in
that there are no guaranteed prices. A knowledge of potential supply and demand for the
various species and strains is just as important to the seed producer as good production
techniques.

For a general discussion on factors
controlling the market for pasture seeds,
readers are referred to Department of
Agriculture Bulletin 3283—"The produc­
tion of pasture seeds—facts and figures."

To seed producers, statistics are import­
ant because they summarise the past and
provide some basis for future predictions.

This article outlines the current position
and comments on some of the more
important species.

Subterranean clover

The total production of subterranean
clover seed in the 1965-66 season reached
the extremely high level of 8,547 tons, an
increase of 2,641 tons over the previous
season. In 1962-63 the total State pro­
duction was only 2,907 tons. Western
Australia is now producing some 70 to 80
per cent. of the total Australian crop.

It was necessary to reject about 30 per
cent. of the Geraldton subterranean clover
pastures submitted for certification in
1966, the final result being a certified
acreage about 15 per cent. higher than the
previous year.

The certified acreage of Woogenellup,
subterranean clover was 50 per cent.
higher than in the 1965 season. The pro­
duction of this strain has been rising
rapidly for the last three seasons. Certi­
fied seed production rose from 295 tons in
1963-64 to 1,263 tons in 1965-66.

Barrel medic

There appears to be a demand for about
800 tons of barrel medic seed each year
in Western Australia. During the summer
of 1965-66 production fell short of this
figure but was well in excess of that for
the previous year.

Harbinger medic

In the summer of 1964-65, 183 tons of
harbinger medic seed were harvested, a
production greatly in excess of demand.
With the resultant price depression pro­
duction in the summer of 1965-66 fell to
28 tons.

Harbinger medic is a relatively new
species and overall demand is increasing
but not at the rate many producers antici­
pated some two years ago. However, there
is a substantial decrease in acreage
certified in 1966 as compared with the
previous season.

Rose and cupped clovers

Although the acreages of both the
Kondinin and Sirint strains of rose clover
accepted for certification are greater than
in 1965, the overall production of rose and
cupped clover seed is unlikely to rise to
the extent indicated by the figures. Much
of the seed comes from the lighter rain­
fall cereal and sheep districts, many of
which did not have favourable growing
conditions for seed crops during the
current season.
Serradella

Serradella is a species for which there is a rapidly increasing demand in Western Australia. It grows satisfactorily on many of the deeper sandy soils along the south and west coasts and there appears to be scope for an expanded production of seed.

Production of serradella seed, mainly yellow serradella, almost trebled in 1965-66 as compared with the previous season, but the market was still undersupplied and seed was difficult to obtain in the autumn of 1966.

CERTIFIED SEED

Acreages registered and production

<table>
<thead>
<tr>
<th></th>
<th>1965-66</th>
<th>1966</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acreage Registered</td>
<td>Production (tons)</td>
</tr>
<tr>
<td>Subterranean clover—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geraldton</td>
<td>31,065</td>
<td>2,222</td>
</tr>
<tr>
<td>Dwalganup</td>
<td>907</td>
<td>157</td>
</tr>
<tr>
<td>Yarloop</td>
<td>6,049</td>
<td>700</td>
</tr>
<tr>
<td>Dinninup</td>
<td>1,433</td>
<td>96</td>
</tr>
<tr>
<td>Woogenellup</td>
<td>21,776</td>
<td>1,263</td>
</tr>
<tr>
<td>Bacchus Marsh</td>
<td>1,052</td>
<td>25</td>
</tr>
<tr>
<td>Clare</td>
<td>3,394</td>
<td>149</td>
</tr>
<tr>
<td>Howard</td>
<td>539</td>
<td>13</td>
</tr>
<tr>
<td>Mt. Barker</td>
<td>3,872</td>
<td>131</td>
</tr>
<tr>
<td>Tallarook</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>Rose clover—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirint</td>
<td>1,081</td>
<td>47</td>
</tr>
<tr>
<td>Kondinin</td>
<td>1,441</td>
<td>60</td>
</tr>
<tr>
<td>Strawberry clover—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palestine</td>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td>Harbinger medic</td>
<td>2,527</td>
<td>24</td>
</tr>
<tr>
<td>Cocksfoot—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currie</td>
<td>55</td>
<td>2</td>
</tr>
</tbody>
</table>

(Please note that the table data is derived from the Commonwealth Bureau of Census and Statistics.)

COVER PICTURE

CHECKING THE PURITY OF CERTIFIED SEED

As part of the Department’s seed certification service samples of each line of certified seed harvested each summer are planted in rows during the following autumn and grown through to the flowering stage. Strain identification of the plants in each row is then made and the proportion of admixture estimated.

The test rows provide a check on the purity of all seed certified and harvested in the previous summer and indicate any pastures in which the proportion of admixture is nearing the borderline for acceptance for certified seed production.

Each year almost 1,000 different test rows are grown for purity checking of certified seed. Most of these are of subterranean clover, but the other certified pasture plants—rose clover, harbinger medic, strawberry clover and cocksfoot—are submitted to the same test.
Intensive wheat production is possible only with efficient fertilization. Thereby nitrogen, phosphoric acid and potash are the main nutrients, promoting strong and healthy plants capable of bearing high yields. RUSTICA compounds provide soils with these nutrients. Nitropotash RUSTICA 20-0-20 is an ideal cereal fertilizer in areas of cheap phosphates, whereas our compound fertilizer RUSTICA 15-15-15 has proved high efficiency wherever wheat is grown. RUSTICA fertilizers are climate-proof packed, and their high nutrient contents save costs in transport, storage and handling.

RUSTICA MEANS MORE PROFIT

For supplies of fertilizers manufactured by RUHR-STICKSTOFF AG, Bochum, West Germany, and for information, write to:

Swift & Company (Trading) Pty Limited, 198 Wellington Street, Perth Tele. 21.5651

Please mention the "Journal of Agriculture of W.A.," when writing to advertisers