Barley diseases in Western Australia

W A. Shipton

W. R. Tweedie

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Agronomy and Crop Sciences Commons, and the Plant Pathology Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol9/iss12/4

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au, paul.orange@dpird.wa.gov.au.
BARLEY DISEASES caused by pathogenic organisms are capable of reducing yields considerably. The recognition of disease is important so that control measures can then be taken at the appropriate time.

In this article the diseases of barley caused by pathogenic organisms are described and illustrated, and where possible, the control measures are given.

Net blotch

Net blotch, caused by the fungus *Pyrenophora teres* Drechs., is a common disease of barley and can reduce yields substantially.

The disease is first apparent on the leaves and leaf sheaths as light to yellowish green spots. These spots soon turn brown. Darker areas appear in the blotches and extend to the leaf axis, giving the lesion a distinctly netted appearance (Fig. 1). Infection of the head occurs as a light to dark brown discoloration, and the spots may have a netted appearance. Grain infection is characterised by a light brown localised discoloration.

The organism apparently persists in infected plant debris and on volunteer barley and susceptible grasses.

Control

The use of resistant varieties is the only effective means of control, but none are yet available. Some measure of control can be obtained by dusting the grain with an organic mercury dust, by destroying infected barley and grass straw by burning and by rotating barley crops with wheat, oats, or legumes.

* Now Post-Doctorate Research Fellow of the National Research Council, Winnipeg, Manitoba, Canada.
Scald

Scald is another common and sometimes serious disease and is caused by the fungus *Rhyncosporium secalis* (Oudem.) J. J. Davis.

The disease first occurs as spots but these quickly develop as water soaked areas of irregular shape on the leaves, stems, and heads. The blotches are greyish green and develop a distinct brown margin; finally the lesions assume a bleached straw colour with brown margins (Fig. 2). The disease causes premature foliage death.

The organism apparently persists in infected crop debris and on volunteer barley.

Control

The same control measures as suggested for net blotch should be used.

The variety Atlas 57 appears to have a degree of resistance, at least in some localities.

Stripe

Stripe is a rare disease caused by the fungus *Pyrenophora graminea* Ito & Kuribay.

The fungus causes a yellow striping of the leaves and leaf sheaths. The yellow areas soon turn brown (Fig. 3).

The disease can be carried over in infected straw and seed. It is likely that the persistence of the organism in infected debris is the main, and possibly the only manner of carry-over here.
Control
The same control measures as suggested for net blotch should be used.

Stem rust
The fungus which causes stem rust of wheat (*Puccinia graminis tritici* Erikss & Henn.) is also capable of infecting barley. The disease is rarely serious on barley.

On a fully susceptible host the disease is evident as elongated reddish-brown pustules (Fig. 4) on leaves, stems, and heads. The pustules are surrounded by a light green area. The powdery spore masses contained in the pustules can be dislodged readily.

Control
Control measures would not appear to be necessary at present. The use of resistant varieties would be the only adequate means of control.

Powdery mildew
This disease, although fairly common, is not usually serious in the main barley growing districts. It is caused by the fungus *Erysiphe graminis* DC.

Infection is evident on the leaves, stems, and heads as a whitish, powdery growth. Initially the infected tissues are pale but later turn dark brown (Fig. 5). The powdery fungal growth turns greyish with age and may become dotted with black fruiting bodies of the fungus (Fig. 6).
Control

The only practical method of control would be through the use of resistant varieties. However, none are available at present.

Covered smut

This rather uncommon disease is caused by the fungus *Ustilago hordei* (Pers.) Lagerh.

Infected heads contain no grain; instead the grain is replaced by a powdery spore mass enclosed by a rather persistent membrane. Infected heads have a greyish white and finally a black appearance (Fig. 7). The membrane enclosing the spore mass ruptures during harvesting and the spores contaminate the healthy grain. Seedlings are infected soon after seed germination. Infection occurs from spores carried on the seed. It is not certain whether soil infection occurs in Western Australia.

Control

Covered smut may be controlled on the seed by the use of organic mercury dusts.

Loose smut

The organism causing loose smut is the fungus *Ustilago nuda* (Jens.) Rostr. The disease is becoming more common and is sometimes serious.

Smutted spikes arise from the boot earlier than healthy ones. No grain is present in the affected heads. A black spore mass replaces the floral bracts and ovaries and is enclosed by a delicate membrane. The membrane ruptures soon after the spikes emerge, and thus at harvest the spikes are more or less bare (Fig. 8). The smut spores infect the healthy ears about the time of flowering and the fungus becomes established in the grain, where it remains dormant until the grain germinates.

There is no carry-over of the disease in the soil.
Control
Seed dusting is ineffective. Clean seed must be obtained from a disease-free crop.

Leaf spot
The fungus which causes leaf spot is *Drechslera verticillata* (O’Gara) Shoemaker. The disease is apparently widespread.
Infection of the leaf is characterised by the occurrence of relatively small oval-shaped spots with light brown centres and dark brown to black margins (Fig. 9). Seed infection may also occur.
Relatively little is known about the disease and no control measures are available.

Yellow dwarf virus
Yellow dwarf is caused by an aphid-transmitted virus. It is not common in the main cereal areas.
The disease is characterised by the development of golden yellow colour from the leaf tip through the entire leaf blade. Dark green stripes extend into the yellow portion of the leaf in the transition zone between green and yellow. A diagnostic feature of the disease is that emerging leaves are golden yellow (Fig. 10). Early infection of plants leads to extreme stunting, excessive tillering, and limited or no spike development. Late infection results in limited spike development, infertile florets, reduced kernel formation, and poorly filled grain.

Control
The use of resistant varieties is the only economical means of control. At present no resistant varieties can be recommended.

Take-all
Take-all of barley is widespread and is caused by the fungus *Ophiobolus graminis* Sacc. Barley is less susceptible to the disease than wheat.
The disease tends to occur in patches. Affected plants die prematurely. Diseased plants may be stunted, and heads contain little or no grain. The roots and crown region are dry, rotten, and discoloured. Removal of the leaf sheath at the base of the plant reveals black streaks or spots which may encircle the stem (Fig. 11).

Control
Multiple cropping is unwise as the disease is likely to increase. Barley should be rotated with oats, linseed, or legumes. Control of weeds and grasses must be maintained in crops and pastures. Stubble burning, the application of adequate fertilisers, including the correction of any nutritional deficiencies, and showing seed at the recommended rate will aid in disease control.

Foot rot
Foot rot of barley occurs widely but is apparently less important than take-all. It is caused by the fungi *Fusarium culmorum* (W. G. Smith) Sacc., *Helminthosporium sativum* Pamm., King, and Bakke, and *Rhizoctonia solani* Kühn.
Symptoms of foot rot are similar to those caused by take-all. However, the basal stem discoloration is not black but varies from light-brown to dark-brown (Fig. 12).

Control
The same control measures as suggested for take-all should be used. The seed should be dusted with an organic mercury dust to control seed-borne infection.
You don’t need a lot of power to harvest clover seed

A 35 h.p. tractor is ample with the NEW BARROW LINTON

Here’s the handiest, most manoeuvrable clover harvester you’ve seen. Much more efficient, too. The famous BL63 adopts a new style—as a single sided offset machine with a 4 ft. blower pick-up. It’s a design with many advantages. Less power is required—you can use any make of tractor from 35 h.p. It has greater strength with a square tubular steel frame. The screening surface is greater and its simple operation means lower maintenance costs. All this adds up to easier, more efficient, more economical harvesting of all types of clover and medic seeds. Adaptable also to Townsville Lucerne and other surface seeds. Send for details.

A product of BARROW LINTON

MAIL TO BARROW LINTON
Please send further information on the new BL-OS
NAME
ADDRESS

Please mention the "Journal of Agriculture of W.A." when writing to advertisers
Perhaps you've thought about the advantages of increased yield from irrigation, but do you actually know how cheaply you can pipe water and use it just where you want it most?

Less than $35 per chain buys the popular 4 inch diameter Fibrolite irrigation pipe (freight adds a fraction more).

Taken over the whole range of sizes, Fibrolite is cheaper to you than any other kind of pipe. This is one of the reasons why it is Australia's top-selling pipe for fixed, underground irrigation lines.

Sooner or later, you may decide to step up your farm profits with irrigation—why, then, delay?

Not only is Fibrolite pipe light and easy to handle, but once installed it provides freedom from maintenance, and unmatched durability. With revolutionary couplings and fittings, pipe lines go together with ease and speed, saving time and labour for the man-on-the-land.

Pressure pipe to withstand 260 lbs. per square inch comes in a big and tough 24 inch, down to a 2 inch and in 13 foot lengths.

For low-pressure systems serving flood and furrow irrigation, Low Head pipe comes cheaper still and economically replaces open channels and ditches.
New mineralised 'URAMOL' gives stock an even better utilization of roughage.

Research in W.A. has shown that sheep and cattle can be maintained in better condition on dry feed if sulphur and other essential minerals are added to the Urea protein supplement.

Now ICIANZ have included these minerals in 'URAMOL' on sale this season. That's progress for you. The new square meal mineralised 'URAMOL'.

Order through your usual ICIANZ reseller.
Clean tails tell the story of healthy calves

HIGH ENERGY DENKAVIT is specially suitable for bought-in calves in stress or infectious conditions.

HIGH ENERGY DENKAVIT is the complete whole milk replacer, ideal for rearing dairy heifers or sturdy beef calves.

LOOK AT THE FACTS: Denkavit research has proved that certain types of fat in a milk replacer diet will help prevent scour, as well as other diseases. This is particularly true in the case of the bought-in calf suffering from transit stress and having been exposed to highly infectious conditions.

FAT & FAT: The fat concentration though must be of the correct order—the trials proved that simple ordinary fats won’t do—it requires that the fats must be especially homogenised and emulsified and must be easily digested by the young calf, and their goodness made fully available to the animal. Denkavit have done a lot of research—and the Denkavit Research Centre leads the world in this respect.

You benefit from every 50 lb. bag

SEND FOR FREE BOOKLET
To: DASCO FARM SUPPLIES,
1280 Albany Highway, Cannington
Please send free copy of the new 44 page booklet on Denkavit

NAME
ADDRESS

Please mention the "Journal of Agriculture of W.A.,” when writing to advertisers

Journal of Agriculture, Vol 9 No 12 1968