W.A. dairying : progress in 42 years

Maurice C. Cullity

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Biomechanical Engineering Commons, Dairy Science Commons, Other Nutrition Commons, and the Other Plant Sciences Commons

Recommended Citation
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol9/iss8/3

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
From hardship and elementary standards, West Australian dairying has developed into a consolidated industry with larger herds, increased output and high quality production. The changes he has seen are reviewed by Mr. M. Cullity who retired last month from the position of Chief of the Division of Dairying, after 42 years of service to the industry.

THE history of Western Australia's dairying industry has been a story of struggle against hardship, marketing problems and adverse criticism. In spite of this the industry has steadily grown and greatly improved its efficiency.

It is now going through a period of consolidation and present indications are that it is recovering from a setback in the past two years.

Pastures

My early association with the establishment of pasture was with demonstrations of the sowing of subterranean clover "on the burn," that is, in the cold ashes after a clearing fire. These demonstrations were very successful and enabled large areas of pasture to be established in partially cleared country even where logs were still lying on the ground.

The development of cheaper forms of clearing speeded up an increase in acreage on the group settlement farms. At that time the older settlers relied on ring-barking and fire to develop the country, and this method was relatively cheap because many newcomers to Australia were prepared to accept low wages and live in primitive conditions.

The real advance in clearing methods came after the World War when bulldozers became available and demonstrations in clearing techniques were carried out by Government machines. Later, contract clearing was carried out by these machines and this eventually led to the system of private contractors doing the work.

In the early 1920's a large number of demonstrations were conducted to show that superphosphate was necessary to get good establishment of clover. Subterranean clover proved to be the only reliable productive species. Later other demonstrations included the use of strains of *Phalaris tuberosa* and Perennial ryegrass.

Unfortunately, the strains available did not prove persistent except in a few localities. Lucerne was successfully grown at this time but the increasing incidence of lucerne flea and red mite made it an unreliable crop. It became largely neglected until special chemicals used at the time of germination proved successful in suppressing these insects.

Later success was achieved in the selection of strains of perennial ryegrass, kikuyu and cocksfoot. Cocksfoot and
various phalaris varieties are gradually producing more productive pastures in several areas.

Kikuyu grass has been known in W.A. for about 50 years. At first it was considered to be a pest. It received little attention also because of the amount of labour required in planting runners. Despite this the grass has forced attention to itself and its value is more widely appreciated.

A seeding strain became available and the older strain seemed to become acclimatised and began to seed. This resulted in a more rapid expansion of the use of this grass, particularly in the more southerly districts.

Fertilisers
Superphosphate was necessary for all soils and at first relatively low rates were applied. Later higher applications at the time of sowing proved successful as did also higher rates of seeding.

In the 1930's pasture deterioration was extremely severe, especially in the districts south of Busselton. No area could more truly be described as “depressed.” About 1939 a deficiency of copper was discovered. When this element was used, mixed with superphosphate, the response in pasture growth and in many other ways throughout the district was dramatic.

During the war a deficiency of zinc occurred. Deterioration still occurred in some areas and sometimes this was shown to be due to other trace elements such as molybdenum. On lighter soils the importance of using potash became increasingly recognised.

Dairy cattle
In the early days of group settlement a number of heifers were imported from the Eastern States, together with a sufficient number of pure bred bulls from cows which had yielded above standard for their age.

At the same time the Zone Mass Herd Improvement Scheme was initiated in an endeavour to build up breed pride in various localities and to facilitate the exchange of bulls between farmers.

A further part of the special plan was the proclamation of the Dairy Cattle Improvement Act requiring the registration and grading of all bulls on dairy farms.

Herd recording of pure bred cattle started in the early 1920's while a similar system for grade herds commenced in 1933.

Artificial breeding
The most revolutionary change in dairy cattle breeding was the establishment of the Artificial Breeding Service by the Department of Agriculture in 1955. The bull stud was situated on the Wokalup Research Station. This service was satisfactorily established and was conducted profitably.

Research stations
The Denmark Research Station property has been owned by the Department of Agriculture for more than 60 years. It was originally established as a small butter and bacon factory. The nucleus of a pure bred herd was also introduced. The property increased in size over the years. Its contribution has been great in the provision to local farmers of pure bred cattle and pigs. A range of experimental work on pastures and fodder crops has been carried out.

The most notable success was the development of a method of establishing pasture on Plantagenet Peaty Sand.

The Bundidup property at Wokalup was transferred to the Department of Agriculture in 1949 for development as a research station. Since then development has proceeded rapidly and the necessary farm facilities have been provided. One hundred and forty acres of irrigated pasture have been established. The property has about 800 cattle, of which more than 100 are milking cows and 150 beef breeders. A large range of investigations has been conducted. These include work on pastures and fodder crops under dry land and irrigated conditions, including studies of productivity of pasture under various stocking rates.

Manufacturing improvements
In 1926 butter manufacturing equipment and methods were crude compared with the situation today.

The Busselton factory, for example, was equipped with two small wooden churns and pasteurisation was carried out in zinc-lined "D" type vats in a small dark elevated loft. Can washing was done in a kauri wooden vat.
Cream was not collected frequently, and the proportion which would be second grade by today's standards was high. Clover taints were prominent and were not eliminated or even reduced during processing. The initial acidity of the cream was very high. The butter was a much more fully flavoured article than is manufactured at present. This was due, apart from the feed flavour, to the relatively high level of acidity left after adding the neutraliser. Creams were very sour.

Since that time, the factories have been progressively improved structurally and more modern and efficient equipment has been installed.

Probably the first important change was from the holding type system of pasteurisation to the flash method, the first flash pasteurisers being Silke-Borg, Universal, and the Eclipse models.

With the coming of vacuum treatment using direct steam injection, the quality of butter improved immediately. Acidity before treatment was reduced to a lower level, feed and weed flavours were eliminated, and the smooth, clean, palatable butter of today began to be produced.

A recent and revolutionary change was the introduction of a continuous butter making machine at one factory, eliminating the traditional churning process.

That over 99 per cent. of West Australian butter is of excellent table quality is a source of gratification. Cheese manufacture has improved and consumption has increased milk butter quality and packaging.

The industry has become more geared for the manufacture of a diversified range of products. This has involved greater quantities of milk instead of cream being delivered to factories.

Dairy premises

In the early years dairy inspection was not very regular. Those who had the responsibility of inspecting dairies were cautious about giving instructions for the improvement of premises; improvements which would cause farmers expense and might force them out of dairying.

Despite this extremely cautious but understanding approach, dairies improved progressively. The original dairies were mainly of the very simple and now obsolete back-out type.

The first major change was the adoption of the walk-through bail. Today the most popular dairy is the herringbone type, which enables a greater throughput of cows per man per hour than any other and with less discomfort to the men; there is no stooping.

At the same time circular yards and radial gates have relieved the farmer of much unnecessary movement.

In some areas bulk vats have been installed, and these again reduce effort on the part of the farmer. They eliminate many chores, and the indication is that the time saved will be used in milking more cows.

Facilities in the dairies have improved; nearly all now have direct water supplies and better water heating and cooling appliances.

These improvements with more frequent deliveries of cream have contributed to improved quality of the final product.

Consolidation

Dairying has been the pioneer grazing industry. As farms became larger, farmers were able to diversify their activities from purely dairying to other forms of livestock farming. Some have also included fruit and potato growing activities.

While the State's dairy cattle graze no more than 500,000 acres, the total area of pasture directly resulting from the pioneering work on dairy farms is now about 2,250,000 acres.

During the period many trials and tribulations have been experienced. Many farmers and their families laboured under great hardships and a good proportion of these left their farms because of their inability to cope with the disabilities associated with carving farms from virgin forest.

However, the present situation is one of consolidation in which there is growing stability as herd sizes increase and the number of unprofitable farms decrease.

In a period of 20 years the average herd size as measured in grade herd recording has increased from 28 to 62. The output of these farms is greater and the economic stability, and therefore the happiness of the dairy farmer and his family, has improved.
a new era in farming

CSBP

AGRAN

History is being made this year in Western Australia. From the new CSBP complex at KWINANA, the result of many years of study, research and experimentation is emerging as a great new fertiliser... AGRAN.

Combining Nitrogen and Phosphate in a form that can be drilled in with the seed in one simple operation, AGRAN is formulated especially for our soils and conditions.

In other great primary producing countries of the world special nitrogen fertilisers are revolutionising farming. This revolution has now reached Western Australia. And the new era of AGRAN offers great benefits to this State as a whole.

AGRAN will be supplied from all works.

AGRAN means increased productivity from old and new land...

AGRAN means high yields on land previously considered useless for cropping...

AGRAN means that land can be cropped every year with no loss of fertility...

AGRAN means each farmer can lift his productivity with less labour and greater convenience...

AGRAN means that Western Australia can substantially increase its wheat yield to help feed an increasing world population.

THE AGRAN FERTILISER REVOLUTION HAS STARTED.

CSBP & Farmers Ltd.

Please mention the "Journal of Agriculture of W.A.," when writing to advertisers.
PRIMARY PRODUCERS LOGICALLY CHOOSE FLORIDA!

These days when you, the primary producer, makes a purchase—it's calculated value for every dollar spent. This is why Florida is the logical choice in farm buildings. Right from your initial inquiry you are dealing with the manufacturer direct, saving you a logical three figure sum, simply by cutting out the middle-man profit. Other logical advantages are that you are dealing with tradesman specialists and not salesmen. Your instructions are treated personally by the man on the job and not by a remote agent miles away from the factory. For all your building requirements contact us—our 15 years experience in steel building is your guarantee to complete satisfaction. We fly to all parts of the state and could be in your area soon. For our rural building specialist to call and see you on your property and assist with ground levels, internal layouts or for illustrated literature and price list—phone or write, we gladly accept reverse charges.

- MACHINERY SHEDS
- PACKING SHEDS
- COTTAGES & QUARTERS
- HAY SHEDS
- GARAGES
- PLANT SHEDS

FLORIDA Quality BUILDINGS
MANUFACTURED BY MANOLAS & COMPANY
137 ALBANY H'WAY, VICTORIA PARK
PHONE 63353; AFTER HOURS 242540

Please mention the "Journal of Agriculture of W.A." when writing to advertisers