Concrete in dairies

D Roger Buchanan

Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Dairy Science Commons, Mechanics of Materials Commons, and the Structural Materials Commons

Recommended Citation
Buchanan, D Roger (1968) "Concrete in dairies," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 9 : No. 8 , Article 5.
Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol9/iss8/5
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
CONCRETE IN DAIRIES

By D. R. BUCHANAN

PRIME requirements for exposed concrete surfaces in dairies are that they should be easily cleansed and should not deteriorate in contact with milk and milk products. In milking stalls, animal races and on loading platforms hardwearing surfaces which offer good foothold are also necessary.

Production of durable concrete

The production of durable concrete is achieved by properly proportioning the mixture, thorough compaction, and continuous moist curing for not less than seven days after placement.

Generally, proportioning will only concern those in an area where premixed concrete is unavailable. Where premixed concrete is obtainable, a concrete having a minimum cement content of 600 lb. per cubic yard and a water : cement ratio not exceeding 0.50 by weight (4.7 gallons of water per bag of cement) should be specified, together with a slump in the range of 2 in. to 3 in.

Specification by compressive strength will have little significance in concrete for a dairy, as the strength performance of a floor will be more than adequate for the loads applied if the concrete is specified as suggested.

Where a farmer has to mix his own concrete he should select a coarse aggregate, such as river gravel or crushed rock, which is hard and sound and free of organic impurities, clay, wood particles or other deleterious matter, and which has particles as nearly as possible ranging uniformly in size from 3/16 in. up to 3/ in.

The fine aggregates (sand) should have similar characteristics and should be graded from fine material up to particles of 3/16 in. in size. It is not always possible to secure sands having these qualities, particularly where available materials are

Suggested mix proportions for different jobs, and water cement ratios

<table>
<thead>
<tr>
<th>Kind of Job</th>
<th>Gallons of water per bag of cement when sand is:</th>
<th>Suggested proportions for trial batch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry</td>
<td>Damp</td>
</tr>
<tr>
<td>Durable Concrete for Dairies</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>(Water-cement ratio 5 gals per bag)</td>
<td></td>
<td>4 1/2</td>
</tr>
<tr>
<td>Concrete for Cattle Races, etc.</td>
<td>5 1/2</td>
<td></td>
</tr>
<tr>
<td>(Water-cement ratio 5 1/2 gals per bag)</td>
<td>4 1/2</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTE.—The increased proportion of sand when sand is damp or wet is required to compensate for the tendency of damp sand to 'bulk' (occupy a larger volume for a given weight of sand). The concrete should be thoroughly mixed for not less than 1 1/2 minutes after adding water. Longer mixing is no disadvantage.
dune sands or other single sized sands. These sands can be used without difficulty but they probably will require a slightly increased cement content in order to give a suitable degree of workability to the concrete.

Water for concrete is suitable if it is fit to drink. If a durable concrete is to be produced the amount of water added to the concrete must be strictly controlled. In assessing the amount of water required, it should be remembered that sand has a tendency to retain quite considerable quantities of water. Thus the amount of water added to the concrete during mixing may have to be reduced. The table below gives a reasonable indication of the type of mix suitable for durable floor construction and for compensation for the wetness of the sand.

Floor construction

The concrete floor to a dairy is normally constructed as a slab-on-ground. For economy this may be built as a thickened edge slab to provide a foundation for perimeter and internal walls. Alternatively the slab may be independent of the walls, with the walls founded separately. If this is done, it is essential that the slab be physically separated from contact with perimeter walls by a strip of bitumen-impregnated caneite or expanding cork set against the walls.

D. R. Buchanan, B.E., A.M.I.E. Aust., is Divisional Engineer for Western Australia of the Cement and Concrete Association of Australia.

This article is one of a series which will have the general aim of helping farmers to make the best use of concrete on the farm.

Further details and information can be obtained direct from:

The Cement and Concrete Association, Manufacturers' Building, 212-220 Adelaide Terrace, PERTH. 6000
It is desirable to reinforce the concrete slab in order to minimise and control any tendency to shrinkage cracking. The amount of reinforcement required will depend on the shape of the floor to be laid. Generally, however, an A.S.A. A.84 mesh (ref. 606) will be satisfactory. This should be placed in the centre of the slab. Additional reinforcement is required where the slab has a thickened edge to receive external wall structures, as shown in the accompanying sketch.

It is important in planning a floor to make suitable provision for holding down bolts for stock rails and machinery bases rather than to attempt to cut these in later. Similarly, drains should be laid before floor construction. The top of all pipeworks should be clear of the underside of the slab.

A slab having a minimum thickness of 4 in. is suitable for most situations in a dairy. Allowance must, of course, be made for falls to drains which should be not less than 1 in 60 in the bails and 1 in 40 in the yards and for spoon drains and falls within the spoon drains.

In the interests of economy it is possible to accommodate spoon drains by thickening the slab to give 4 in. thickness below the invert. The underside of the slab should then be tapered to either side (see sketch). Reinforcement should be continuous through such thickened portions.

In sandy country it will be necessary to form up the profile, elsewhere hand shaping of the ground is normally sufficient.

Placing Concrete

The preparation of the site should be carried out with care to give a smooth, level, well-drained surface to receive the concrete.

Where there is a high water table or where some limited excavation is necessary to remove organic or other spongy material, the site should be brought to level using crushed rock, the site then being surfaced with 2 in. to 3 in. of similar material. This should be thoroughly wetted down before placing of concrete is started, to minimise moisture loss from the concrete itself.

Concrete should be placed within one hour of mixing and should be thoroughly compacted by hand tamping or internal vibration, or by use of a vibrating screed. Where hand tamping or internal vibration is used, the surface should be finally screeded by hand. Surface trowelling should be avoided until just before the initial set, at which time the floor should be finished with either a hand operated wood float or better still, with a mechanical trowel, followed by a wood float.

It is inadvisable to finish a floor with a steel trowel where milk spillage can occur, or where cattle are standing or moving, as a slippery floor could result. Care should be taken to ensure that too much cement fines and water (laitence) is not worked to the surface during trowelling, as this will tend to produce a floor which gives a poor performance.

Journal of Agriculture, Vol 9 No 8 1968
In milking bails and races, it is advisable to finish the floor with some form of grooving to ensure adequate foot-hold for stock. A grooving tool may be used to produce a diamond pattern on the floor, immediately following light brooming with a soft broom, but this type of finish can lead to difficulties in cleansing. It is probably best to groove the surface after wood floating using a stiff broom at 45° to 60° to the length of the stall, followed by use of a grooving tool at irregular centres, grooves following the same direction as the brooming.

This provides a floor which can be cleansed by hosing and sweeping down in one direction only.

Spoon drains and drainage outlets should be finished with a steel trowel.

Curing

The quality, freedom from surface crazing, wear resistance and durability of a concrete floor is improved considerably by moist-curing the floor immediately it is hard. In a dairy, as in most other areas demanding high performance from a concrete floor, it is essential that moist curing should continue for a period of not less than seven days. This can be achieved—

- by ponding the finished slab under water; or
- by covering with damp sand under continuous fog sprays; or perhaps more easily
- by the use of building paper which is laid over and in contact with the surface as soon as it has hardened sufficiently. The building paper should be well lapped and secured at joins and at the perimeter so that sheets will not be lifted by the wind; alternatively
- one of the many proprietary curing agents may be sprayed on to the surface, but such compounds need to be checked for suitability in the light of eventual surface treatments.

Protective surface treatments

To further improve abrasion resistance and to ensure impervious conditions the floor may be given one of several surface treatments. Such treatments can also improve the performance of existing floors which are porous or are dusting or spalling.

In areas where surface hardness is a prime consideration, it is recommended that the surface should be treated with either sodium silicate or zinc and magnesium fluosilicate.

Sodium silicate (water glass) is quite viscous and must be diluted at the rate of about one gallon of sodium silicate to four gallons of water. This is flooded over the surface and well scrubbed in with a hard broom, until the surface is uniformly coated. After the coat has hardened for at least 24 hours, it should be scrubbed down with water and a further coat applied. Two to three coats are normally sufficient.

Alternatively, a mixture of one part of zinc silico-fluoride to four parts of magnesium fluosilicate gives a good result. The solution should be made by using \(\frac{1}{2} \) lb. of this mixture per gallon of water for the first coat, and 2 lb. of the mixture per gallon of water thereafter.

It is applied in the same way as sodium silicate. However, there is a risk that silico-fluorides may release hydrogen fluoride gas and this mixture should be used only in well-ventilated premises with the operator's eyes and any skin or abrasions protected. About one gallon of the diluted solution will treat 20 yards of floor at each coat.

In areas where milk spillage is the main consideration the floor may be treated with a drying oil. Boiled or raw linseed oil may be used and should be applied hot. Two or three coats may be applied, each coat being allowed to dry fully before the next application. It is advisable to dilute the first coat with an equal quantity of turpentine.

Oil can be applied after the zinc and magnesium fluosilicate treatment where both surface hardness and resistance to chemical attack are desired.

As an alternative to oil, a varnish may be used. The types of varnish which are suitable are those high grade varnishes made from China wood oil, bakelite and phenolic resin, or polystyrene emulsion. Alternatively, treatment with an epoxy resin is extremely effective though more expensive in first cost.
Reduce losses from overlaying to as low as 2% with the

“TIKI” ZIG-ZAG PIG FARROWING CRATE

This revolutionary new design occupies far less floor space than conventional farrowing crates and drastically reduces losses from overlaying. The Ziz-Zag provides greater area for the sow plus clearly defined areas for sleeping and dunging by the litter. It gives effective heating of piglet sleeping areas with economies in heating due to the proximity of adjacent litter sleeping areas. Easy access for inspection and cleaning. Price includes drinkers and feeders. Only $280 without heater.

WETMORE

GRINDER MIXERS

CHOPS*GRINDS+ADDS*MIXES+DELIVERS

ALL STOCK FEEDS—GREEN OR DRY

The Wetmore Grinder-Mixer is tailored to suit all needs and feeds, from fine meals to coarse forage. Designed for one-man operation it enables you to mill and mix your own grown grains, hay and green feeds to any formula and to controlled consistency. In a few minutes it will prepare two tons of mixed feed, with any additives, and deliver to where you want it.

There’s a Wetmore Mill for every purpose

Wetmore Feed Mills have been progressively developed since 1929 and are positively established on their mechanical merits. Models are available with capacities from 85 to 350 bushels grain per hour. Single rotor combines knives, hammers, air ducts.

For further information contact

Dasco FARM SUPPLIES

1280 ALBANY HWY, CANNINGTON
PHONE 68 1518

Earlier weaning with

DENKAVIT PIGLET STARTER

12-day and 3-week weaning can be successfully carried out with DENKAVIT PIGLET STARTER providing the facilities and management are good. Make this test: Feed one bag of Denkavit Piglet Starter to a litter of pigs on their mothers. Start from the 5th or 6th day and check how much the extra weight of the litter is worth over the cost of the bag. Then add the bonus you get in healthier piglets which wean easily and keep on growing.

Piglet Castrating Cradle

Firmly holds piglets up to 10 weeks old for quick and easy castration. One man operation. Detachable rear legs for easy transport. Saves time and effort. Only $20.

Pig Weigh Crate

Ideal for pigs, sheep, calves. Weighs to 300 lb on live/deadweight scale. Quick release doors each end. Wheels and handles for mobility. $165.

Please mention the "Journal of Agriculture of W.A.,” when writing to advertisers
NOW SOLVE ALL MITE PROBLEMS WITH

TEDION V-18

Thorough coverage of all leaf surfaces is important in obtaining best results. Tedion V-18 is extremely effective when applied as mite eggs begin to hatch.

Tedion V-18 has:

- A long residual effect.
- Very low toxicity to humans.
- No effect on beneficial insects (bees), predators or warm-blooded animals.
- Cut costs of pest control and increased returns.

Laboratory tests have shown that Tedion V-18 has been exceptionally safe on plants, whether used in the greenhouse or in the field, under a wide range of geographical conditions.

PHILIPS-DUPHAR PTY. LIMITED

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.
MURESK AGRICULTURAL COLLEGE
New Diploma Course

As from the beginning of 1969 the entrance requirements for the Diploma of Agriculture course will be:

- A pass at Western Australian Leaving Certificate standard in English, Chemistry, Physics and a Mathematics,
 or
- An educational standard considered by the Principal to be equivalent to the above. (Note: The W.A. Leaving Certificate is equivalent to Matriculation Level in all other states.)

Application for Enrolment

- Applications will close on November 30 of the year preceding the commencement of the course.
- Successful applicants will be informed as soon as the W.A. Leaving Certificate results are available. This should be completed by January 20.
- Applicants will be required to confirm their enrolment by the second Friday in February.
- If there are still some vacancies at this time, late enrolments may be received up to the first Friday in March.

The "Alra-Mana" Stationary Adult Cattle Scale

... is totally self-contained and simple to set to use, giving maximum service with minimum attention.

- Available with Dial Head.
- (12½", 18" or 23½") Reading Chart.
- Full capacity Steelyard or Loose Weight Steelyard.
- Capacity 2,000-3,000 lbs.

PATTERSON'S SCALE INDUSTRIES PTY. LTD.
18 LOVE STREET, BULIMBA, BRISBANE, QUEENSLAND

Specialists in Animal Weighing Equipment for every purpose—Cattle, Sheep, Junior Animals and Pigs, also Fleece.

Please forward by return, illustrations and prices for Weighing Equipment.

Name
Address

Please mention the "Journal of Agriculture of W.A." when writing to advertisers.