Draining irrigation areas

K. S. Cole

J. P. Middlemas

Follow this and additional works at: http://researchlibrary.agric.wa.gov.au/journal_agriculture4

Part of the Hydrology Commons, and the Soil Science Commons

Recommended Citation

This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact jennifer.heathcote@agric.wa.gov.au, sandra.papenfus@agric.wa.gov.au.
IMPORTANT DISCLAIMER

This document has been obtained from DAFWA's research library website (researchlibrary.agric.wa.gov.au) which hosts DAFWA's archival research publications. Although reasonable care was taken to make the information in the document accurate at the time it was first published, DAFWA does not make any representations or warranties about its accuracy, reliability, currency, completeness or suitability for any particular purpose. It may be out of date, inaccurate or misleading or conflict with current laws, polices or practices. DAFWA has not reviewed or revised the information before making the document available from its research library website. Before using the information, you should carefully evaluate its accuracy, currency, completeness and relevance for your purposes. We recommend you also search for more recent information on DAFWA's research library website, DAFWA's main website (https://www.agric.wa.gov.au) and other appropriate websites and sources.

Information in, or referred to in, documents on DAFWA's research library website is not tailored to the circumstances of individual farms, people or businesses, and does not constitute legal, business, scientific, agricultural or farm management advice. We recommend before making any significant decisions, you obtain advice from appropriate professionals who have taken into account your individual circumstances and objectives.

The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia and their employees and agents (collectively and individually referred to below as DAFWA) accept no liability whatsoever, by reason of negligence or otherwise, arising from any use or release of information in, or referred to in, this document, or any error, inaccuracy or omission in the information.
IRRIGATION AREAS

By K. S. Cole, Senior Adviser, Irrigation and Water Resources Branch and J. P. Middlemas, Adviser, Bunbury Regional Office

Many irrigation schemes throughout the world have turned into unproductive saline flats and swamps. This dramatic change can occur within a few years of irrigation starting and has been part of irrigation schemes from earliest times up to the present day.

The main cause of this salinisation is normally excess irrigation water use combined with poor drainage. Any form of waterlogging will have an adverse effect on plant growth.

In Western Australia's south-western irrigation area, soils with clay sub-soils or some other impediment to drainage are the most prone to waterlogging. The main drainage methods used in irrigation areas are:

- Open surface drains,
- Buried tube drains of perforated plastic pipe or tile drains, or
- Pumping the aquifer.

All drainage systems should have drainage channels to remove the excess water. Man-made drains are installed in government irrigation areas, but in private irrigation schemes landowners must ensure that surplus water is not led on to a neighbour's property where it can cause damage or be a nuisance. If a suitable outlet is not available, some arrangement must be made for the safe disposal of effluent.

The Water Authority or the Department of Agriculture should be consulted if there is any doubt about where to dispose of the excess water.

Open surface drains

Open surface drains can remove large quantities of water quickly and efficiently provided the land surface is conducive to surface flows. Where duplex soils occur and the surface soil is free draining, open surface drains can assist in lowering water tables.

Surface drains are relatively cheap to build and are easily maintained. These drains are generally 'U' or 'V'-shaped and are built with a backhoe or grader. A tail drain should be built at the lower end of each paddock to remove surplus water. Some farmers with border check irrigation use shallow spinner drains between the borders to help remove surplus surface water.

Tube drains

Perforated plastic drainage pipe consists either of slotted P.V.C. in six-metre lengths fitted together or corrugated, perforated polyethylene coils up to 200 m long. Corrugated piping is easy to lay and is the most widely used piping in the State's irrigation areas.

The plastic piping is laid in a narrow trench, either directly on the trench floor or preferably on a shallow bed of filtering material such as coarse sand or gravel. After the pipe has been laid a filter, preferably of washed gravel varying from five millimetres to 20 mm in diameter and which does not contain any fine material, is laid on top of the pipe. This gravel filter should be at least 10 cm deep. The remainder of the trench is filled with the removed soil.

This type of drain, particularly when sited under permeable topsoils, would normally be between 1 to 1.5 m or more deep. In heavy clay soils the drains are sometimes shallower at 0.6 to 1 m deep.

Gradients of the pipes can vary from 0.1 to about 5 per cent or greater. Gradients below 0.5 per cent can often cause silting in the pipes.

Journal of Agriculture, Vol 26, No. 4, 1985
Drain spacing and the size of the drain should be considered carefully. Farmers should consult a Department of Agriculture district office for advice on site assessment before starting any work.

Mole drainage

Mole drainage is mainly used to control topsoil waterlogging of heavy soils. A channel is formed by drawing a bullet-shaped implement—the mole—through the soil at a depth of 400 to 500 mm. The depth is usually limited by the heavy draught caused by the mole and the following expander as it is pulled through the soil. A successful mole drain is one in which a stable channel is formed which keeps its shape while continually going through wet and dry periods.

The soil should have a minimum clay content of 30 per cent and be free of large stones. For efficient operation there should be a surface fall or grade greater than 0.4 per cent.

The soil moisture content down the profile is critical to the success of mole drainage. Timing of the operation depends on soil moisture status. The soil surface should be dry enough for efficient traction, and the sub-soil at treatment depth firm but should be plastic enough to be compressed into a channel.

Moles drains are usually constructed one or two metres apart. Such close spacing can cause installation problems from tractor wheel marks if the wheels are not positioned carefully between the drains.

In Western Australia, mole drains normally discharge into an open drain which must allow the mole-formed channels to drain freely and not back water up along the tube, causing it to collapse. Overseas, a combined system of mole drains and tube drains covered with permeable backfill is used. The mole drain channels are drawn over the tube drains so that the bullet of the mole plough penetrates the permeable backfill. Water passes down through the moling fissures to the mole channel and then through the permeable backfill into the drain.

Spacing of the tube drains varies from 20 to 80 m apart depending on soil type, clay content of the subsoil and slope of the land.

Mole drainage is a relatively cheap and simple operation which can effectively drain clay soils provided certain conditions are met.

- The tractor used must be powerful enough to draw the mole channel evenly and continuously through the soil at the specified depth.
- There should be no reverse grades in the area to be drained.
- The plough is designed and adjusted so that the mole travels parallel to the general surface slope, otherwise a distorted and weak channel will result. The expander must leave a smooth channel of adequate size.

Further reading